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C Dirichlet and periodic principal eigenvalues 37

Abstract

We consider a periodic reaction diffusion system which, because of competition be-
tween u and v, does not enjoy the comparison principle. It also takes into account mu-
tations, allowing u to switch to v and vice versa. Such a system serves as a model in
evolutionary epidemiology where two types of pathogens compete in a heterogeneous en-
vironment while mutations can occur, thus allowing coexistence.

We first discuss the existence of nontrivial positive steady states, using some bifurca-
tion technics. Then, to sustain the possibility of invasion when nontrivial steady states
exist, we construct pulsating fronts. As far as we know, this is the first such construction
in a situation where comparison arguments are not available.

Key Words: reaction diffusion systems, pulsating fronts, evolutionary epidemiology, bifu-
raction technics, Bernstein gradient estimate, Harnack inequality.

AMS Subject Classifications: 35K57, 35B10, 92D15, 92D30.

1 Introduction

This work is concerned with the heterogeneous reaction diffusion system∂tu = ∂xxu+ u [ru(x)− γu(x)(u+ v)] + µ(x)v − µ(x)u, t > 0, x ∈ R,

∂tv = ∂xxv + v [rv(x)− γv(x)(u+ v)] + µ(x)u− µ(x)v, t > 0, x ∈ R,
(1)

where ru, rv are periodic functions and γu, γv, µ are periodic positive functions. After
discussing the existence of nontrivial steady states via bifurcation technics, we construct pul-
sating fronts, despite the lack of comparison principle for (1). Before going into mathematical
details, let us describe the relevance of the the above system in evolutionary epidemiology.

System (1) describes a theoretical population divided into two genotypes with respective
densities u(t, x) and v(t, x), and living in a one-dimensional habitat x ∈ R. We assume
that each genotype yields a different phenotype which also undergoes the influence of the
environment. The difference in phenotype is expressed in terms of growth rate, mortality
and competition, but we assume that the diffusion of the individuals is the same for each
genotype. Finally, we take into account mutations occuring between the two genotypes.

The reaction coefficients ru and rv represent the intrinsic growth rates, which depend on
the environment and take into account both birth and death rates. Notice that ru and rv
may take some negative values, in deleterious areas where the death rate is greater than the
birth rate. Function µ corresponds to the mutation rate between the two species. It imposes
a truly cooperative dynamics in the small populations regime, and couples the dynamics of
the two species. In particular, one expects that, at least for small mutation rates, mutation
aids survival and coexistence. We also make the assumption that the mutation process is
symmetric. From the mathematical point of view, this simplifies some of the arguments we
use and improves the readability of the paper. We have no doubt that similar results hold in
the non-symmetric case, though the proofs may be more involved.

In this context, the ability of the species to survive globally in space depends on the sign
of the principal eigenvalue of the linearized operator around extinction (0, 0), as we will show
further, which involves the coefficients ru, rv, µ.
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Finally, γu and γv represent the strength of the competition (for e.g. a finite resource)
between the two strains. The associated dynamics arises when populations begin to grow. It
has no influence on the survival of the two species, but regulates the equilibrium densities of
the two populations.

Such a framework is particularly suited to model the propagation of a pathogenic species
within a population of hosts. Indeed system (1) can easily be derived from a host-pathogen
microscopic model [26] in which we neglect the influence of the pathogen on the host’s diffu-
sion.

In a homogeneous environment the role of mutations, allowing survival for both u and v,
has recently been studied by Griette and Raoul [25], through the system

∂tu = ∂xxu+ u(1− (u+ v)) + µ(v − u)

∂tv = ∂xxv + rv

(
1− u+ v

K

)
+ µ(u− v).

On the other hand, it is known that the spatial structure has a great influence on host-
parasites systems, both at the epidemiological and evolutionary levels [15], [7], [33]. In order to
understand the influence of heterogeneities, we aim at studying steady states and propagating
solutions, or fronts, of system (1).

Traveling fronts in homogeneous environments. In a homogeneous environment, propagation
in reaction diffusion equations is typically described by traveling waves, namely solutions to
the parabolic equation consisting of a constant profile shifting at a constant speed. This goes
back to the seminal works [22], [31] on the Fisher-KPP equation

∂tu = ∆u+ u(1− u),

a model for the spreading of advantageous genetic features in a population. The literature
on traveling fronts for such homogeneous reaction diffusion equations is very large, see [22],
[31], [5, 6], [21], [24], [13] among others. In such situations, many techniques based on the
comparison principle — such as some monotone iterative schemes or the sliding method [14]—
can be used to get a priori bounds, existence and monotonicity properties of the solution.

Nevertheless, when considering nonlocal effects or systems, the comparison principle may
no longer be available so that the above techniques do not apply and the situation is more
involved. One usually uses topological degree arguments to construct traveling wave solu-
tions: see [12], [20], [2], [29] for the nonlocal Fisher-KPP equation, [4] for a bistable nonlocal
equation, [3] for a nonlocal equation in an evolutionary context, [25] for a homogeneous sys-
tem in an evolutionary context... Notice also that the boundary conditions are then typically
understood in a weak sense, meaning that the wave connects 0 to “something positive” that
cannot easily be identified: for example, in the nonlocal Fisher-KPP equation the positive
steady state u ≡ 1 may present a Turing instability.

In a heterogeneous environment, however, it is unreasonable to expect the existence of
such a solution. The particular type of propagating solution we aim at constructing in our
periodic case is the so called pulsating front, first introduced by Xin [37] in the framework of
flame propagation.

Pulsating fronts in heterogeneous environments. The definition of a pulsating front is the
natural extension, in the periodic framework, of the aforementioned traveling waves. We
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introduce a speed c and shift the origin with this speed to catch the asymptotic dynam-
ics. Technically, a pulsating front (with speed c) is then a profile (U(s, x), V (s, x)) that is
periodic in the space variable x, and that connects (0, 0) to a non-trivial state, such that
(u(t, x), v(t, x)) := (U(x − ct, c), V (x − ct, x)) solves (1). Equivalently, a pulsating front is a
solution of (1) connecting (0, 0) to a non-trivial state, and that satisfies the constraint(

u

(
t+

L

c
, x

)
, v

(
t+

L

c
, x

))
= (u(t, x− L), v(t, x− L)), ∀(t, x) ∈ R2.

As far as monostable pulsating fronts are concerned, we refer among others to the seminal
works of Weinberger [36], Berestycki and Hamel [8]. Let us also mention [30], [10], [27], [28]
for related results.

One of the main difficulties we encounter when studying system (1) is that two main
dynamics co-exist. On the one hand, when the population is small, (1) behaves like a cooper-
ative system which enjoys a comparison principle. On the other hand, when the population
is near a non-trivial equilibrium, (1) is closer to a competitive system. Since those dynam-
ics cannot be separated, our system does not admit any comparison principle, and standard
techniques such as monotone iterations cannot be applied. As far as we know, the present
work is the first construction of pulsating fronts in a situation where comparison arguments
are not available.

2 Main results and comments

2.1 Assumptions, linear material and notations

Periodic coefficients. Throughout this work, and even if not recalled, we always make
the folllowing assumptions. Functions ru, rv, γu, γv, µ : R → R are smooth and periodic with
period L > 0. We assume further that γu, γv and µ are positive. We denote their bounds

0 < γ0 ≤ γu(x), γv(x) ≤ γ∞
0 < µ0 ≤ µ(x) ≤ µ∞

r0 ≤ ru(x), rv(x) ≤ r∞,

for all x ∈ R. Notice that ru and rv are allowed to take negative values, which is an additional
difficulty, in particular in the proofs of Lemma 4.3 and Lemma 5.4. The fact that ru, rv do
not have a positive lower bound is the main reason why we need to introduce several types
of eigenvalue problems, see (19) and (34), to construct subsolutions of related problems.

On the linearized system around (0, 0). We denote by A the symmetric matrix field
arising after linearizing system (1) near the trivial solution (0, 0), namely

A(x) :=

(
ru(x)− µ(x) µ(x)

µ(x) rv(x)− µ(x)

)
. (2)

Since A(x) has positive off-diagonal coefficients, the elliptic system associated with the linear
operator −∆−A(x) is cooperative, fully coupled and therefore satisfies the strong maximum
principle as well as other convenient properties [17].
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Remark 2.1 (Cooperative elliptic systems and comparison principle). Cooperative systems
enjoy similar comparison properties as scalar elliptic operators. In particular, [17] and [19]
show that the maximum principle holds for cooperative systems if the principal eigenvalue is
positive. Moreover, Section 13 (see also the beginning of Section 14) of [17] shows that, for
so-called fully coupled systems (which is the case of all the operators we will encounter since
µ(x) ≥ µ0 > 0), the converse holds. These facts will be used for instance in the proof of
Lemma 4.2.

Let us now introduce a principal eigenvalue problem that is necessary to enunciate our
main results.

Definition 2.2 (Principal eigenvalue). We denote by λ1 the principal eigenvalue of the sta-
tionary operator −∆−A(x) with periodic conditions, where A is defined in (2).

In particular, we are equipped through this work with a principal eigenfunction Φ :=

(
ϕ
ψ

)
satisfying {

−Φxx −A(x)Φ = λ1Φ

Φ is L-periodic, Φ is positive, ‖Φ‖L∞ = 1.
(3)

For more details on principal eigenvalue for systems, we refer the reader to [17], in partic-
ular to Theorem 13.1 (Dirichlet boundary condition) which provides the principal eigenfunc-
tion. Furthermore, in the case of symmetric (self-adjoint) systems as the one we consider, the
equivalent definition [19, (2.14)] provides some additional properties, in particular that the
eigenfunction minimizes the Rayleigh quotient.

Function spaces. To avoid confusion with the usual function spaces, we denote the function
spaces on a couple of functions with a bold font. Hence Lp(Ω) := Lp(Ω)×Lp(Ω) for p ∈ [1,∞]
and Hq(Ω) := Hq(Ω)×Hq(Ω) for q ∈ N are equipped with the norms∥∥∥∥(uv

)∥∥∥∥
Lp

:=

∥∥∥∥(‖u‖Lp‖v‖Lp

)∥∥∥∥
p

,

∥∥∥∥(uv
)∥∥∥∥

Hq

:=

∥∥∥∥(‖u‖Hq

‖v‖Hq

)∥∥∥∥
2

.

Similarly, Cα,β := Cα,β × Cα,β for α ∈ N and β ∈ [0, 1] is equipped with

∥∥∥∥(uv
)∥∥∥∥

Cα,β
:=

max (‖u‖Cα,β , ‖v‖Cα,β ) and Cα := Cα,0. The subscript of those spaces denotes a restriction
to a subspace : Lpper, Hq

per, C0
per, C0,1

per, C1
per for L-periodic functions, H1

0 for functions that
vanish on the boundary, etc. Those function spaces are Banach spaces, and H1, H1

per, H1
0,

L2 and L2
per have a canonical Hilbert structure.

2.2 Main results

As well-known in KPP situations, the sign of the principal eigenvalue λ1 is of crucial im-
portance for the fate of the population: we expect extinction when λ1 > 0 and propagation
(hence survival) when λ1 < 0. To confirm this scenario, we first study the existence of a non-
trivial nonnegative steady state of problem (1), that is a nontrivial nonnegative L-periodic
solution to the system{

−p′′ = (ru(x)− γu(x)(p+ q))p+ µ(x)q − µ(x)p

−q′′ = (rv(x)− γv(x)(p+ q))q + µ(x)p− µ(x)q.
(4)
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Theorem 2.3 (On nonnegative steady states). If λ1 > 0 then (0, 0) is the only nonnegative
steady state of problem (1).

On the other hand, if λ1 < 0 then there exists a nontrivial positive steady state (p(x) >
0, q(x) > 0) of problem (1).

Next we turn to the long time behavior of the Cauchy problem associated with (1). First,
we prove extinction when the principal eigenvalue is positive.

Proposition 2.4 (Extinction). Assume λ1 > 0. Let a nonnegative and bounded initial condi-
tion (u0(x), v0(x)) be given. Then, any nonnegative solution (u(t, x), v(t, x))) of (1) starting
from (u0(x), v0(x)) goes extinct exponentially fast as t→∞, namely

max
(
‖u(t, ·)‖L∞(R), ‖v(t, ·)‖L∞(R)

)
= O(e−λ1t).

The proof of Proposition 2.4 is rather simple so we now present it. The cooperative
parabolic system ∂tū = ∂xxū+ (ru(x)− µ(x))ū+ µ(x)v̄

∂tv̄ = ∂xxv̄ + (rv(x)− µ(x))v̄ + µ(x)ū,
(5)

enjoys the comparison principle, see [23, Theorem 3.2]. On the one hand, any nonnegative
(u(t, x), v(t, x)) solution of (1) is a subsolution of (5). On the other hand one can check that
(Mϕ(x)e−λ1t,Mψ(x)e−λ1t) — with (ϕ,ψ) the principal eigenfunction satisfying (3)— is a
solution of (5) which is initially larger than (u0, v0), if M > 0 is sufficiently large. Conclusion
then follows from the comparison principle.

The reverse situation λ1 < 0 is much more involved. Since in this case we aim at controlling
the solution from below, the nonlinear term in (1) has to be carefully estimated. In order to
show that the population does invade the whole line when λ1 < 0, we are going to construct
pulsating fronts for (1).

Definition 2.5 (Pulsating front). A pulsating front for (1) is a speed c > 0 and a classical
positive solution (u(t, x), v(t, x)) to (1), which satisfy the constraint(

u(t+ L
c , x)

v(t+ L
c , x)

)
=

(
u(t, x− L)
v(t, x− L)

)
, ∀(t, x) ∈ R2, (6)

and supplemented with the boundary conditions

lim inf
t→+∞

(
u(t, x)
v(t, x)

)
>

(
0
0

)
, lim

t→−∞

(
u(t, x)
v(t, x)

)
=

(
0
0

)
, (7)

locally uniformly w.r.t. x.

Following [10], we introduce a new set of variables that correspond to the frame of reference
that follows the front propagation, that is (s, x) := (x− ct, x). In these new variables, system
(1) transfers into{

−(uxx + 2uxs + uss)− cus = (ru(x)− γu(x)(u+ v))u+ µ(x)v − µ(x)u

−(vxx + 2vxs + vss)− cvs = (rv(x)− γv(x)(u+ v))v + µ(x)u− µ(x)v,
(8)

6



and the constraint (6) is equivalent to the L-periodicity in x of the solutions to (8). An
inherent difficulty to this approach is that the underlying elliptic operator, see the left-hand
side member of system (8), is degenerate. This requires to consider a regularization of the
operator and to derive a series of a priori estimates that do not depend on the regularization,
see [8] or [10]. In addition to this inherent difficulty, the problem under consideration (1) does
not admit a comparison principle, in contrast with the previous results on pulsating fronts.
Nevertheless, as in the traveling wave case, if we only require boundary conditions in a weak
sense — see (7) in Definition 2.5— then we can construct a pulsating front for (1) when the
underlying principal eigenvalue is negative. This is the main result of the present paper since,
as far as we know, this is the first construction of a pulsating front in a situation without
comparison principle.

Theorem 2.6 (Construction of a pulsating front). Assume λ1 < 0. Then there exists a
pulsating front solution to (1).

As clear in our construction through the paper, the speed c∗ > 0 of the pulsating front of
Theorem 2.6 satisfies the bound

0 < c∗ ≤ c̄0 := inf{c ≥ 0 : ∃λ > 0, µc,0(λ) = 0},

where µc,0(λ) is the first eigenvalue of the operator

Sc,λ,0Ψ := −Ψxx + 2λΨx + [λ(c− λ)Id−A(x)] Ψ

with L-periodic boundary conditions. In previous works on pulsating fronts [36], [8], [10], it
is typically proved that c̄0 is actually the minimal speed of pulsating fronts (and that faster
pulsating fronts c > c̄0 also exist). Nevertheless, those proofs seem to rely deeply on the fact
that pulsating fronts, as in Definition 2.5, are increasing in time, which is far from obvious
in our context without comparison. We conjecture that this remains true but, for the sake of
conciseness, we leave it as an open question.

The paper is organized as follows. Section 3 is concerned with the proof of Theorem 2.3 on
steady states. In particular the construction of nontrivial steady states requires an adaptation
of some bifurcations results [34, 35], [18] that are recalled in Appendix, Section A. The rest of
the paper is devoted to the proof of Theorem 2.6, that is the construction of a pulsating front.
We first consider in Section 4 an ε-regularization of the degenerate problem (8) in a strip,
where existence of a solution is proved by a Leray-Schauder topological degree argument.
Then, in Section 5 we let the strip tend to R2 and finally let the regularization ε tend to
zero to complete the proof of Theorem 2.6. This requires, among others, a generalization
to elliptic systems of a Bernstein-type gradient estimate performed in [9], which is proved in
Appendix, Section B.

3 Steady states

This section is devoted to the proof of Theorem 2.3. The main difficulty is to prove the
existence of a positive steady state to (1) when λ1 < 0. To do so, we shall use the bifurcation
theory introduced in the context of Sturm-Liouville problems by Crandall and Rabinowitz [18],
[34, 35]. Though an equivalent result may be obtained using a topological degree argument,
this efficient theory shows clearly the relationship between the existence of solutions to the
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nonlinear problem and the sign of the principal eigenvalue of the linearized operator near
zero.

We shall first state and prove an independent theorem that takes advantage of the Krein-
Rutman theorem in the context of a bifurcation originating from the principal eigenvalue
of an operator. We will then use this theorem to show the link between the existence of a
non-trivial positive steady state for (1), and the sign of the principal eigenvalue defined in
(3).

3.1 Bifurcation result, a topological preliminary

We first prove a general bifurcation theorem, interesting by itself, which will be used as an
end-point of the proof of Theorem 2.3. It consists in a refinement of the results in [18], [35, 34],
under the additional assumption that the linearized operator satisfies the hypotheses of the
Krein-Rutman Theorem. Our contribution is to show that the set of nontrivial fixed points
only “meets” R×{0} at point ( 1

λ1(T ) , 0), with λ1(T ) the principal eigenvalue of the linearized
operator T .

This theorem is independent from the rest of the paper and we will thus use a different
set of notations.

Theorem 3.1 (Bifurcation under Krein-Rutman assumption). Let E be a Banach space. Let
C ⊂ E be a closed convex cone with nonempty interior IntC 6= ∅ and of vertex 0, i.e. such
that C ∩ −C = {0}. Let

F : R× E → E
(α, x) 7→ F (α, x)

be a continuous and compact operator, i.e. F maps bounded sets into relatively compact ones.
Let us define

S := {(α, x) ∈ R× E\{0} : F (α, x) = x}

the closure of the set of nontrivial fixed points of F , and

PRS := {α ∈ R : ∃x ∈ C\{0}, (α, x) ∈ S}

the set of nontrivial solutions in C.
Let us assume the following.

1. ∀α ∈ R, F (α, 0) = 0.

2. F is Fréchet differentiable near R × {0} with derivative αT locally uniformly w.r.t. α,
i.e. for any α1 < α2 and ε > 0 there exists δ > 0 such that

∀α ∈ (α1, α2), ‖x‖ ≤ δ ⇒ ‖F (α, x)− αTx‖ ≤ ε‖x‖.

3. T satisfies the hypotheses of Theorem A.1 (Krein-Rutman), i.e. T (C\{0}) ⊂ IntC. We
denote by λ1(T ) > 0 its principal eigenvalue.

4. S ∩ ({α} × C) is bounded locally uniformly w.r.t. α ∈ R.

5. There is no fixed point on the boundary of C, i.e. S ∩ (R× (∂C\{0})) = ∅.

Then, either
(
−∞, 1

λ1(T )

)
⊂ PRS or

(
1

λ1(T ) ,+∞
)
⊂ PRS.
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Proof. Let us first give a short overview of the proof. Since λ1 is a simple eigenvalue, we know

from Theorem A.2 that there exists a branch of nontrivial solutions originating from
(

1
λ1
, 0
)

.

We will show that this branch is actually contained in R×C, thanks to Theorem A.3. Since

it cannot meet R× {0} except at
(

1
λ1
, 0
)

, it has to be unbounded, which proves our result.

Let us define
SC := {(α, x) ∈ R× (C\{0}) : F (α, x) = x}

which is a subset of S, and α1 := 1
λ1(T ) . We may call (α, x) ∈ SC a degenerate solution if

x ∈ ∂C, and a proper solution otherwise.
Our first task is to show that the only degenerate solution is {(α1, 0)}. We first show

SC ∩ (R × ∂C) ⊂ {(α1, 0)}. Let (α, x) ∈ SC ∩ (R × ∂C) be given. By item 5 we must have
x = 0. Let (αn, xn) → (α, 0) such that xn ∈ C \ {0} and F (αn, xn) = xn. Let us define
yn = xn

‖xn‖ ∈ C \ {0}. On the one hand since yn is a bounded sequence and T is a compact

operator, up to an extraction the sequence (Tyn) converges to some z which, by item 3, must
belong to C. On the other hand

yn =
xn
‖xn‖

= αnTyn +
F (αn, xn)− αnTxn

‖xn‖
= αz + o(1)

in virtue of items 1 and 2, so that in particular z 6= 0 and α 6= 0. Since yn → αz and Tyn → z
we have z = αTz. Hence z ∈ C \ {0} is an eigenvector for T associated with the eigenvalue
1
α so that Theorem A.1 (Krein-Rutman) enforces α = 1

λ1(T ) = α1.

Next we aim at showing the reverse inclusion, that is {(α1, 0)} ⊂ SC ∩ (R × ∂C). We
shall use the topologic results of Appendix A, namely Theorem A.2 and Theorem A.3. Let
z ∈ C be the eigenvector of T associated with λ1(T ) such that ‖z‖ = 1, T ∗ the dual of T , and
l ∈ E′ the eigenvector2 of T ∗ associated with λ1(T ) such that 〈l, z〉 = 1, where 〈·, ·〉 denotes
the duality between E and its dual E′.

Now, for ξ > 0 and η ∈ (0, 1), let us define

K+
ξ,η := {(α, x) ∈ R× E : |α− α1| < ξ, 〈l, x〉 > η‖x‖}.

The above sets are used to study the local properties of S near the branching point (α1, 0).
More precisely, it follows from Theorem A.3 that S\{(α1, 0)} contains a nontrivial connex
compound C+

α1
which is included in K+

ξ,η and near (α1, 0) :

∀ξ > 0, ∀η ∈ (0, 1), ∃ζ0 > 0, ∀ζ ∈ (0, ζ0), (C+
α1
∩Bζ) ⊂ K+

ξ,η,

where
Bζ = {(α, x) ∈ R× E : |α− α1| < ζ, ‖x‖ < ζ}.

Moreover, C+
α1

satisfies the alternative in Theorem A.2. Let us show that (C+
α1
∩Bζ) ⊂ R×C

for ζ > 0 small enough, i.e.
∃ζ > 0, (C+

α1
∩Bζ) ⊂ R× C. (9)

To do so, assume by contradiction that there exists a sequence (αn, xn)→ (α1, 0) such that

∀n ∈ N, (αn, xn) ∈ C+
α1

and xn /∈ C.
2Let us recall that according to the Fredholm alternative, we have dim ker(I−λT ) = dim ker(I−λT ∗) <∞

so that each eigenvalue of T is an eigenvalue of T ∗ with the same multiplicity.
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Writing xn
‖xn‖ = αnT xn

‖xn‖ + F (αn,xn)−αnTxn
‖xn‖ and reasoning as above, we see that (up to extrac-

tion) the sequence
(

xn
‖xn‖

)
converges to some w such that Tw = 1

α1
w = λ1(T )w. As a result

w = z or w = −z (recall that z is the unique eigenvector of T such that z ∈ C and ‖z‖ = 1).
But the property 〈l, xn〉 ≥ η‖xn‖ enforces xn

‖xn‖ → z. Since xn
‖xn‖ 6∈ C and z ∈ IntC, this is a

contradiction. Hence (9) is proved.
Since C+

α1
is connected and C+

α1
∩ (R × ∂C) = ∅ by item 5, we deduce from (9) that

C+
α1
⊂ SC . Moreover, since by definition {(α1, 0)} ∈ C+

α1 and SC is closed, we have

{(α1, 0)} ⊂ SC ∩ (R× ∂C).

We have then established that {(α1, 0)} is the only degenerate solution in C i.e. SC ∩(R×
∂C) = {(α1, 0)}. Applying Theorem A.3 near {(α1, 0)}, there exists a branch C+

α1
of solutions

such that {(α1, 0)} ⊂ C+
α1 . By the above argument, C+

α1
⊂ SC . Since C+

α1
cannot meet R×{0}

at (α, 0) 6= (α1, 0), it follows from Theorem A.3 that C+
α1

is unbounded. It therefore follows
from item 4 that there exists a sequence (αn, xn) ∈ C+

α1
with |αn| → ∞. Since C+

α1
contains

only proper solutions (i.e. C+
α1
∩(R×∂C) = ∅), the projection PR(C+

α1
) of C+

α1
on R is included

in PRS. Finally, the continuity of the projection PR and the fact that C+
α1

is connected show
that either (α1, α

n) ⊂ PR(C+
α1

) or (αn, α1) ⊂ PR(C+
α1

), depending on α1 ≤ αn or αn ≤ α1.
Letting n→∞ proves Theorem 3.1.

3.2 A priori estimates on steady states

In order to meet the hypotheses of Theorem 3.1 in subsection 3.3, we prove some a priori
estimates on stationary solutions. We have in mind to apply Theorem 3.1 in the cone of
nonnegativity of L∞(R). Specifically, Lemma 3.2 will be used to meet item 4 (the solutions
are locally bounded), and Lemma 3.3 will be used to meet item 5 (there is no solution on the
boundary of the cone).

Lemma 3.2 (Uniform upper bound). There exists a constant C = C(r∞, µ∞, γ0) > 0 such
that any nonnegative periodic solution (p, q) to (4) satisfies p(x) ≤ C and q(x) ≤ C, for all
x ∈ R.

Proof. Let

(
p
q

)
be a solution to system (4), so that{

−p′′ ≤ p(ru − γup) + q(µ− γup)
−q′′ ≤ q(rv − γvq) + p(µ− γvq).

(10)

Let us define C := max
(
r∞

γ0
, µ
∞

γ0

)
> 0. Denote by x0 a point where p reaches its maximum,

so that −p′′(x0) ≥ 0. Assume by contradiction that p(x0) > C. Then, in virtue of (10), one
has −p′′(x0) ≤ p(x0)(ru(x0)−γu(x0)C) < 0, which is a contradiction. Thus p ≤ C. Inequality
q ≤ C is proved the same way.

Lemma 3.3 (Positivity of solutions). Any nonnegative periodic solution (p, q) to (4) such
that (p, q) 6≡ (0, 0) actually satisfies p(x) > 0 and q(x) > 0, for all x ∈ R.

Proof. Write {
−p′′ ≥ p(ru − µ− γu(p+ q))
−q′′ ≥ q(rv − µ− γv(p+ q)),

and the result is a direct application of the strong maximum principle.

10



3.3 Proof of the result on steady states

We are now in the position to prove Theorem 2.3.

The λ1 > 0 case. Let (p, q) be a nonnegative steady state solving (4). We need to show that

(p, q) ≡ (0, 0). Let us recall that Φ =

(
ϕ
ψ

)
is the principal eigenfunction solving (3). From

Lemma 3.2, we can define

C0 := inf

{
C ≥ 0 : ∀x ∈ R,

(
p(x)
q(x)

)
≤ C

(
ϕ(x)
ψ(x)

)}
. (11)

Let us assume by contradiction that C0 > 0. Hence, without loss of generality, p−C0ϕ attains
a zero maximum value at some point x0 ∈ R, and q − C0ψ ≤ 0 at this point. But, from (3)
and (4) we get{

−(p− C0ϕ)′′ − (ru(x)− µ(x))(p− C0ϕ) = µ(x)(q − C0ψ)− γu(p+ q)p− λ1C0ϕ < 0

−(q − C0ψ)′′ − (rv(x)− µ(x))(q − C0ψ) = µ(x)(p− C0ϕ)− γv(p+ q)q − λ1C0ψ < 0.

Evaluating the first inequality at point x0 yields (p−C0ϕ)′′(x0) > 0, which is a contradiction
since x0 is a local maximum for p− C0ϕ. As a result C0 = 0 and (p, q) ≡ (0, 0).

The reverse situation λ1 < 0, where we need to prove the existence of a nontrivial steady
state, is more involved. We shall combine our a priori estimates of subsection 3.2 with our
bifurcation result, namely Theorem 3.1. We will also use the λ1 > 0 case. We want to
stress eventually that we will use the notations introduced in subsection 2.1, in particular for
functional spaces.

Before starting the proof itself, we would like to present briefly the core of the argument
we use. We introduce a new parameter β ∈ R and look at the modified system{

−p′′ = p(ru + β − γu(p+ q)) + µ(q − p)
−q′′ = q(rv + β − γv(p+ q)) + µ(p− q) (12)

which is system (4) with ru (resp. rv) replaced by ru + β (resp. rv + β). We apply Theorem
3.1 to system (12) with the bifurcation parameter β. There exists then a branch of solutions
originating from β = λ1, and which spans to β → +∞ since the eigenvalue of the linearization
of system (12) is positive for β < λ1 (i.e. no solution exists for β ∈ (−∞, λ1)). In particular
there exists a solution for β = 0 since λ1 < 0. Let us make this argument rigorous.

The λ1 < 0 case. We start with the following lemma.

Lemma 3.4 (Fréchet differentiability). Let

f

(
p
q

)
:=

(
−γu(p+ q)p
−γv(p+ q)q

)
.

Then, the induced operator L∞per(R) −→ L∞per(R) is Fréchet differentiable at

(
0
0

)
with deriva-

tive 0L∞.

11



Proof. We need to show that∥∥∥∥f (pq
)∥∥∥∥

L∞per(R)

= o

(∥∥∥∥(pq
)∥∥∥∥

L∞per(R)

)

as

∥∥∥∥(pq
)∥∥∥∥

L∞per(R)

→ 0. We have

∥∥∥∥f (pq
)∥∥∥∥

L∞per(R)

≤ γ∞
∥∥∥∥(pq

)∥∥∥∥
L∞per(R)

‖p+ q‖L∞per(R) ≤ 2γ∞
∥∥∥∥(pq

)∥∥∥∥2

L∞per(R)

which proves the lemma.

We are now in the position to complete the proof of Theorem 2.3. It follows from classical
theory that, for M > 0 large enough, the problem

−
(
p̃
q̃

)′′
−A(x)

(
p̃
q̃

)
+M

(
p̃
q̃

)
=

(
p
q

)
(
p̃
q̃

)
∈ H1

per

(13)

has a unique weak solution

(
p̃
q̃

)
, for each

(
p
q

)
∈ L2

per. Let us call L−1
M the associated operator,

namely
L−1
M : L2

per → H1
per(

p
q

)
7→

(
p̃
q̃

)
.

Notice that, assuming M > −λ1, the principal eigenvalue associated with problem (13) is
λ′1 := λ1 + M > 0, and recall that the actual algebraic eigenvalue λ1(L−1

M ) of the operator
L−1
M is given by

λ1(L−1
M ) =

1

λ′1
> 0.

From elliptic regularity, the restriction of L−1
M to L∞per(R) maps L∞per(R) into C0,θ

per(R),

0 < θ < 1, and L−1
M is therefore a compact operator on L∞per(R). Hence,

F : R× L∞per(R) → L∞per(R)(
α,

(
p
q

))
7→ L−1

M

(
f

(
p
q

)
+ α

(
p
q

))
is a continuous and compact map, to which we aim at applying Theorem 3.1. Let us recall
that the cone of nonegativity

C :=

{(
p
q

)
∈ L∞per(R) :

(
p
q

)
≥
(

0
0

)}
is, as required by Theorem 3.1, a closed convex cone of vertex 0 and nonempty interior in

L∞per. Finally, we want to stress that solutions to F

(
α,

(
p
q

))
=

(
p
q

)
are classical solutions

to the system

−
(
p
q

)′′
−A(x)

(
p
q

)
= f

(
p
q

)
+ (α−M)

(
p
q

)
(14)
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which is equivalent to system (12) with β = α −M , where α is the bifurcation parameter.
Let us check that all assumptions of Theorem 3.1 are satisfied.

1. Clearly we have ∀α ∈ R, F
(
α,

(
0
0

))
=

(
0
0

)
.

2. From Lemma 3.4 and the composition rule for derivatives, F is Fréchet differentiable

near R×
{(

0
0

)}
with derivative αL−1

M locally uniformly w.r.t. α.

3. From the comparison principle (available for L−1
M since λ′1 > 0, see [17]), L−1

M satisfies
the hypotheses of the Krein-Rutman Theorem, namely L−1

M (C \ {0}) ⊂ IntC.

4. Lemma 3.2 shows that, for any α∗ < α∗, S ∩ (α∗, α
∗)×C is bounded (in view of system

(12), the constant C defined in the proof of Lemma 3.2 is locally bounded w.r.t. α).

5. From Lemma 3.3, any nonnegative fixed point is positive, i.e. S ∩ (R× (∂C\{0})) = ∅.

We may now apply Theorem 3.1 which states that either S ∩ ({α} × (C \ {0})) 6= ∅ for
any α ∈ (λ′1,+∞) or S ∩ ({α} × (C \ {0})) 6= ∅ for any α ∈ (−∞, λ′1). Invoking the case
of positive principal eigenvalue (see the begininning of the present subsection), we see that
there is no nonnegative nontrivial fixed points when α < λ′1. As a result we have

∀α ∈ (λ′1,+∞),S ∩ ({α} × (C \ {0})) 6= ∅.

In particular, since λ′1 = M + λ1 < M , there exists a positive fixed point for α = M , which
is a classical solution of (14). This completes the proof of Theorem 2.3.

4 Towards pulsating fronts: the problem in a strip

We have established above the existence of a nontrivial periodic steady state (p(x) > 0, q(x) >
0) when the first eigenvalue of the linearized stationary problem λ1 is negative. The rest of
the paper is devoted to the construction of a pulsating front, see Definition 2.5, when λ1 < 0.

In order to circumvent the degeneracy of the elliptic operator in (8) we need to introduce a
regularization via a small positive parameter ε. Also, in order to gain compactness, the system
(8) posed in (s, x) ∈ R2 (recall that s = x− ct) is first reduced to a strip (s, x) ∈ (−a, a)×R
(recall the periodicity in the x variable).

More precisely, let us first define the constants a∗0 > 0 (minimal size of the strip in the s
variable on which we impose a normalization), ν0 > 0 (maximal normalization), and K0 > 0
by

a∗0 := 2

√
5

−λ1
, ν0 := min

(
1,
−λ1

4γ∞
,min
x∈R

(p(x), q(x))

)
,

K0 := max

(
8γ∞maxx∈R(p(x) + q(x))

−λ1
, 1 + max

x∈R

(
p(x)

q(x)
,
q(x)

p(x)

))
.

Also we define the strip Ω0 := (−a0, a0)× R for a0 ≥ a∗0.

Theorem 4.1 (A solution of the regularized problem in a strip). Assume λ1 < 0. Let
a0 > a∗0, 0 < ν < ν0 and K > K0 be given. Then there is C > 0 such that, for any ε ∈ (0, 1),
there is ā = āε > 0 (whose definition can be found in Lemma 4.3 item 4) such that: for any
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a ≥ a0 + ā, there exist a L-periodic in x and positive (u(s, x), v(s, x)), bounded by C, and
a speed c ∈ (0, c̄ε + ε), solving the following mixed Dirichlet-periodic problem on the domain
Ω := (−a, a)× R

Lεu− cus = u(ru − γu(u+ v)) + µv − µu in Ω

Lεv − cvs = v(rv − γv(u+ v)) + µu− µv in Ω

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R
(u, v)(a, x) = (0, 0), ∀x ∈ R
sup
Ω0

(u+ v) = ν,

(15)

where Lε := −∂xx − 2∂xs − (1 + ε)∂ss and the speed c̄ε ≥ 0 is defined in Lemma 4.2.

This whole section is concerned with the proof of Theorem 4.1. In order to use a topological
degree argument, we transform continuously our problem until we get a simpler problem for
which we know how to compute the degree explicitely.

Our first homotopy allows us to get rid of the competitive behaviour of the system.
Technically we interpolate the nonlinear terms −γuuv, −γvuv with the linear terms −γuu q

K ,
−γvv pK respectively, to obtain system (20) which is truly cooperative. In particular, since
the boundary condition at s = −a is a supersolution to (20), we can prove the existence of a
unique solution to (20) for each c ∈ R via a monotone iteration technique, the monotonicity
of the constructed solutions and further properties. Nevertheless we still need to compute the
degree explicitely, to which end we use a second homotopy that interpolates the right-hand
side of (20) with a linear term, and then a third homotopy to get rid of the coupling between
the speed c and the profiles u and v. At this point we are equipped to compute the degree.
For related arguments in a traveling wave context, we refer teh reader to [12], [3, 4], [25].

The role of the a priori estimates in subsections 4.1, 4.2 and 4.3 is to ensure that there
is no solution on the boundary of the open sets that we choose to contain our problem, and
thus that the degree is a constant along our path. In subsection 4.4, we complete the proof
of Theorem 4.1.

Before that, we need to establish some properties on the upper bound c̄ε for the speed in
Theorem 4.1.

Lemma 4.2 (On the upper bound for the speed). Let

Sc,λ,εΨ := −Ψxx + 2λΨx + [λ(c− (1 + ε)λ)Id−A(x)] Ψ,

and define
c̄ε = inf {c ≥ 0, ∃λ > 0, µc,ε(λ) = 0} , (16)

where µc,ε(λ) is the first eigenvalue of the operator Sc,λ,ε with L-periodic boundary conditions.
Then the following holds.

1. For any ε ∈ (0, 1), we have c̄ε < +∞.

2. We have c̄ε = min {c ≥ 0,∃λ > 0, µc,ε(λ) = 0}.

3. ε 7→ c̄ε is nondecreasing.
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Proof. 1. We need to prove that the set in the right-hand side of (16) is non-empty. We

first notice that µc,ε(0) = λ1 < 0 for any c > 0. Next, for the eigenfunction Φ :=

(
ϕ
ψ

)
solving (3), we have Sc,λ,εΦ = λ1Φ + 2λΦx + λ(c− (1 + ε)λ)Φ. In particular for λ = c

2 ,
we have

Sc, c
2
,εΦ ≥ (λ1 +

c2

4
(1− ε))Φ + cΦx ≥

(
0
0

)
as soon as c ≥ c∗ where c∗ > 0 depends only on the quantities min(ϕ,ψ), ‖Φx‖L∞ and
−λ1. It therefore follows from [17, Theorem 13.1, item c] that µc∗,ε

(
c∗
2

)
≥ 0. Since

the principal eigenvalue of Sc,λ,ε is continuous3 with respect to λ (and c), there exists
λ ∈ (0, c∗2 ] such that µc∗,ε(λ) = 0, which proves that (16) is well-posed.

2. For the eigenfunction Φ solving (3), we have

Sc,λ,εΦ ≤ 2λΦx − λ2
(

1 + ε− c

λ

)
Φ <

(
0
0

)
as soon as λ ≥ λ∗ where λ∗ > 0 depends only on min(ϕ,ψ), ‖Φx‖L∞ , and an upper
bound for c. Hence the maximum principle does not hold for Sc,λ,ε, and it follows from
[17, Theorem 14.1] that µc,ε(λ) ≤ 0.

Now, we consider sequences cn ↘ c̄ε, and λn ≥ 0 such that µcn,ε(λn) = 0. From the
above, we have λn ≤ λ∗ so that, up to extraction, λn → λ∞. From the continuity of the
principal eigenvalue, we deduce that µc̄ε,ε(λ∞) = 0, and the infimum in (16) is attained.

3. Let ε′ ≤ ε and c > 0 such that there is a positive solution Θ to Sc,λ,εΘ =

(
0
0

)
. Then

Sc,λ,ε′Θ = (ε− ε′)λ2Θ ≥
(

0
0

)
so that, as in the proof of item 1, there exists 0 < λ′ ≤ λ

such that µc,ε′(λ
′) = 0. Thus

{c ≥ 0, ∃λ > 0, µc,ε(λ) = 0} ⊂ {c ≥ 0, ∃λ > 0, µc,ε′(λ) = 0}.

Taking the infimum on c yields c̄ε
′ ≤ c̄ε.

Lemma 4.2 is proved.

4.1 Estimates along the first homotopy

Let us recall that the role of the first homotopy is to get rid of the competition of our original
problem (τ = 1), so that the classical comparison methods become available for τ = 0.
Notice that it is crucial that the Dirichlet condition at s = −a is a supersolution for the τ = 0
problem, in order to apply a sliding method in the following subsection. Hence, for 0 ≤ τ ≤ 1,

3This property is potentially false in general but has a simple proof in our setting. Take a sequence of
operators Tn → T that send a proper cone C into K ⊂ Int C with K compact, i.e. Tn(C) ⊂ K and T (C) ⊂ K.
Assume that the series of normalized eigenvectors xn ∈ C s.t. Tnxn = λnxn diverges, then we can extract to
sequences x1n → y ∈ C and x2n → z ∈ C with y 6= z. Extracting further, there exists µ and ν s.t. Ty = µy and
Tz = νz which is a contradiction since y 6= z. Hence the continuity of the eigenvalue.
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we consider the problem
Lεu− cus = u[ru − γu(u+ (τv + (1− τ) qK ))] + µv − µu
Lεv − cvs = v[rv − γv((τu+ (1− τ) pK ) + v)] + µu− µv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R
(u, v)(a, x) = (0, 0), ∀x ∈ R,

(17)

along with the normalization condition sup
Ω0

(u+ v) = ν.

Lemma 4.3 (A priori estimates along the first homotopy). Let a nonnegative (u, v) ∈ C1
per(Ω)

(where Ω = (−a, a)× R and the periodicity is understood only w.r.t. the x ∈ R variable) and
c ∈ R solve (17), with 0 ≤ τ ≤ 1. Then

1. (u, v) is a classical solution to (17), i.e. (u, v) ∈ C2(Ω).

2. The positive constant C := max(2r∞

γ0
,K max(p+ q)) is such that

u(s, x) + v(s, x) ≤ C, ∀(s, x) ∈ Ω = [−a, a]× R.

3. (u, v) is positive in Ω.

4. Let λ0 > 0 and Φ0(x) =

(
Φu(x)
Φv(x)

)
>

(
0
0

)
be such that Sc̄ε,λ0,εΦ0 = 0 and ‖Φ0‖L∞per(R) =

1. Define ā = āε := max(− 1
λ0

ln
(
νmin(Φu,Φv)
4K max(p,q)

)
, 1). Then if a ≥ a0 + ā and c ≥ c̄ε, we

have sup
Ω0

(u+ v) < ν
2 .

5. If c = 0 and a ≥ a0 + 1 then

sup
Ω0

(u+ v) ≥ −λ
ε
1

γ∞
− max(p+ q)

K
, (18)

where λε1 is the principal eigenvalue of the operator Lε − A(x) with Dirichlet condition
in s and L-periodic condition in x, in the domain Ω0, as defined in (19).

Proof. 1. This is true from classical elliptic regularity. We omit the details.

2. In view of (17), the sum S := u+ v satisfies

LεS − cSs = ruu+ rvv − γuu(u+ (1− τ) qK + τv)− γvv(v + (1− τ) pK + τu)
≤ r∞S − γ0(u2 + v2).

Since S2 = u2 + 2uv + v2 ≤ 2(u2 + v2), we have

LεS − cSs ≤
γ0

2
S

(
2r∞

γ0
− S

)
.

Since the maximum principle holds for the operator Lε − c∂s independently of c and
ε > 0, S cannot have an interior local maximum which is greater than 2r∞

γ0
. This along

with the boundary conditions S(−a, x) = K(p(x) + q(x)), S(a, x) = 0 proves item 2.
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3. Assume that there exists (s0, x0) ∈ (−a, a)× R such that u(s0, x0) = 0. Since

Lεu− cus ≥ u
[
ru (x)− γu (x)

(
u+

(
τv + (1− τ)

q

K

))
− µ (x)

]
,

the strong maximum principle enforces u ≡ 0 which contradicts the boundary condition
at s = −a. The same argument applies to v.

4. Let ζ(s, x) := Be−λ0sΦ0(x), B > 0. Then we have

Lεζ−cζs = Be−λ0s (Sc̄ε,λ0,εΦ0 +A(x)Φ0 + λ0(c− c̄ε)Φ0) = A(x)ζ+λ0(c− c̄ε)ζ ≥ A(x)ζ

so that ζ is a strict supersolution to problem (17). By item 2, one can define

B0 := inf

{
B > 0, ∀(s, x) ∈ [−a, a]× R,

(
u(s, x)
v(s, x)

)
≤ ζ(s, x)

}
> 0

and ζ0(s, x) =

(
ζu(s, x)
ζv(s, x)

)
:= B0e

−λ0sΦ0(x). From the strong maximum principle in

(−a, a)×R, and the s = a boundary condition, the touching point has to lie on s = −a.
Thus there exists x0 such that either ζu(−a, x0) = u(−a, x0) or ζv(−a, x0) = v(−a, x0).

In any case one has B0 ≤ Ke−λ0a max(p,q)
min(Φu,Φv) , which in in turn implies

sup
Ω0

(u+ v) ≤ 2B0e
λ0a0 ≤ 2K

max(p, q)

min(Φu,Φv)
e−λ0(a−a0) ≤ 2K

max(p, q)

min(Φu,Φv)
e−λ0ā ≤ ν

2
,

in view of the definition of ā. This proves item 4.

5. Assume by contradiction that sup
Ω0

(u+v) <
−λε1
γ∞ −

max(p+q)
K (which in particular enforces

λε1 < 0). Then, in (−a0, a0)× R, we have{
Lεu = (ru − µ− γu(u+ τv + (1− τ) qK ))u+ µv ≥ (ru − µ+ λε1)u+ µv
Lεv = (rv − µ− γv(v + τu+ (1− τ) pK ))v + µu ≥ (rv − µ+ λε1)v + µu.

Denote by Φε(s, x) :=

(
ϕ̄(s, x)
ψ̄(s, x)

)
the principal eigenvector associated with λε1 (vanishing

at s = ±a0, L periodic in x) normalized by ‖Φ̄ε‖L∞per(R) = 1, see problem (19). Define

A0 := max{A > 0 : Aϕ̄(s, x) ≤ u(s, x) and Aψ̄(s, x) ≤ v(s, x), ∀(s, x) ∈ [−a0, a0]× R}.

Then we have A0ϕ̄ ≤ u, A0ψ̄ ≤ v, with equality at at least one point for at least one
equation, say A0ϕ̄(s0, x0) = u(s0, x0) for some −a0 < s0 < a0 and x0 ∈ R. But

Lε(u−A0ϕ̄)− (ru − µ+ λε1)(u−A0ϕ̄) ≥ µ(v −A0ψ̄) ≥ 0,

so that the strong maximum principle enforces u ≡ A0ϕ̄, which is a contradiction since
u is positive on (−a, a)×R and ϕ̄ vanishes on {±a0} ×R. A similar argument leads to
a contradiction in the case v(s0, x0) = A0ψ̄(s0, x0). This proves item 5.

Lemma 4.3 is proved.
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Item 5 of the above lemma is relevant only when λε1 < 0, which is actually true if a0 > 0
is large enough, as proved below. Let us denote by λε1, Φε(s, x) the principal eigenvalue,
eigenfunction solving the mixed Dirichlet-periodic eigenproblem

LεΦ
ε = A(x)Φε + λε1Φε in Ω0 = (−a0, a0)× R

Φε(−a0, x) = Φε(a0, x) = 0 ∀x ∈ R
Φε(s, x) is periodic w.r.t. x

Φε >

(
0
0

)
in Ω0 = (−a0, a0)× R.

(19)

Lemma 4.4 (An estimate for λε1). We have λε1 ≤ λ1 + 5
2a20

(1 + ε).

Proof. Since the matrix A(x) is symmetric, we are equipped with the Rayleigh quotient

λε1 = inf
w∈H1

0,per×H1
0,per

∫
(−a0,a0)×(0,L)

(
twxwx + 2 twxws + (1 + ε) twsws − twA(x)w

)
dsdx∫

(−a0,a0)×(0,L)
tww dsdx

.

Let us denote Φ(x) =

(
ϕ(x)
ψ(x)

)
the principal eigenvector solving (3), and define

Φ̄ := ‖Φ‖−1
L2
per

Φ.

We define the test function w(s, x) := η(s)Φ̄(x), with η(s) :=
√

15
16a50

(a0 − s)(a0 + s), so that∫
(−a0,a0) η

2(s)ds = 1. Noticing that
∫
twxwsdxds = 0, we get

λε1 ≤
∫

(0,L)
( tΦ̄xΦ̄x − tΦ̄A(x)Φ̄)(x)dx+

∫
(−a0,a0)

(1 + ε)η2
s(s)ds = λ1 +

5

2a2
0

(1 + ε),

which shows the result.

Remark 4.5 (Consistency of the choice of parameters in Theorem 4.1). Let us say a word on
the choice of the positive parameters (a∗0, ν0, K0) in Theorem 4.1. First, the choice of a∗0 and
Lemma 4.4 imply that λε1 ≤ 3λ1

4 for any ε ∈ (0, 1) and a0 ≥ a∗0. Then, (18) and the choices of
K0, ν0 imply that, for c = 0,

sup
Ω0

(u+ v) ≥ −λ1

2γ∞
≥ 2ν0.

In particular, item 5 in Lemma 4.3 gives a true lower bound for sup
Ω0

(u+ v) in the case c = 0.

4.2 Estimates for the end-point τ = 0 of the first homotopy

We introduce the problem
Lεu− cus = u(ru − γu(u+ q

K )) + µv − µu
Lεv − cvs = v(rv − γv( pK + v)) + µu− µv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R
(u, v)(a, x) = (0, 0), ∀x ∈ R,

(20)
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which corresponds to (17) with τ = 0 and for which comparison methods are available. In
this subsection we derive refined estimates for (20) that will allow us to enlarge the domain
on which the degree is computed, which is necessary for the second homotopy that we will
perform.

Lemma 4.6 (On problem (20)). 1. For each c ∈ R, there exists a unique nonnegative
solution (u, v) to (20), which satisfies

∀(s, x) ∈ Ω, 0 < u(s, x) < Kp(x) and 0 < v(s, x) < Kq(x). (21)

2. Let c ∈ R and (u, v) the nonnegative solution to (20). Then u and v are nonincreasing
in s.

3. The mapping c 7→
(
u
v

)
is decreasing, where (u, v) is the unique nonnegative solution to

(20).

Proof. In this proof we denote

f :

(
x,

(
u
v

))
7→
(
u(ru(x)− γu(x)(u+ q

K )) + µ(x)v − µ(x)u
v(rv(x)− γv(x)( pK + v)) + µ(x)u− µ(x)v

)
(22)

so that (20) is recast Lε

(
u
v

)
− c
(
u
v

)
s

= f

(
x,

(
u
v

))
. We select M > 0 large enough so that

f(x, ·) + MId is uniformly nondecreasing on [0, C]2, with C the constant from Lemma 4.3,
that is(

0
0

)
≤
(
u1

v1

)
≤
(
u2

v2

)
≤
(
C
C

)
⇒ f

(
x,

(
u2

v2

))
− f

(
x,

(
u1

v1

))
≥ −M

(
u2 − u1

v2 − v1

)
,

for all x ∈ R.

1. We first claim that (s, x) 7→ (Kp(x),Kq(x)) is a strict supersolution to problem (20).
Since K ≥ K0, we have p+ q < Kp ≤ Kp+ q

K so that

Lε(Kp)− c(Kp)s = −(Kp)′′

= (Kp)(ru(x)− γu(x)(p+ q)) + µ(x)Kq − µ(x)Kp
> (Kp)(ru(x)− γu(x)(Kp+ q

K )) + µ(x)(Kq)− µ(x)(Kp),

and similarly

Lε(Kq)− c(Kq)s > (Kq)(rv(x)− γv(x)( pK +Kq)) + µ(x)(Kp)− µ(x)(Kq),

which proves the claim. Obviously, (s, x) 7→
(

0
0

)
is a strict subsolution to problem (20)

because of the boundary condition at s = −a. Since system (20) is cooperative, the
classical monotone iteration method shows that, for any c ∈ R, there exists at least a
solution (u, v) to problem (20) which satisfies (21).
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Next, in order to prove uniqueness, let (u, v) and (ũ, ṽ) be two nonnegative solutions to
(20), such that (u, v) 6= (ũ, ṽ). Then, for any 0 < ζ < 1, (U ζ , V ζ) := (ζu, ζv) satisfies

LεU
ζ − cU ζs = U ζ(ru − γu q

K − µ−
γu(x)
ζ U ζ) + µ(x)V ζ

< U ζ(ru − γu q
K − µ− γu(x)U ζ) + µ(x)V ζ

LεV
ζ − cV ζ

s = V ζ(rv − γv pK − µ−
γv(x)
ζ V ζ) + µ(x)U ζ

< V ζ(rv − γv pK − µ− γv(x)V ζ) + µ(x)U ζ

(U ζ , V ζ)(−a, x) = (ζKp(x), ζKq(x)) ≤ (Kp(x),Kq(x))
(U ζ , V ζ)(a, x) = (0, 0),

and is therefore a strict subsolution to problem (20). From Hopf lemma we know that
(ũs, ṽs)(a, x) < (0, 0) so that we can define

ζ0 := sup{ζ > 0 : (U ζ , V ζ)(s, x) < (ũ, ṽ)(s, x), ∀(s, x) ∈ Ω} > 0.

Then we have (0, 0) ≤ (U ζ0 , V ζ0) ≤ (ũ, ṽ) ≤ (C,C). Assume by contradiction that
ζ0 < 1. Then we have

Lε(ũ− U ζ0)− c(ũ− U ζ0)s +M(ũ− U ζ0) ≥ 0
Lε(ṽ − V ζ0)− c(ṽ − V ζ0)s +M(ṽ − V ζ0) ≥ 0

(ũ− U ζ0 , ṽ − V ζ0)(−a, x) ≥ (0, 0)
(ũ− U ζ0 , ṽ − V ζ0)(a, x) = (0, 0).

From Hopf lemma we deduce

((ũ− U ζ0)s, (ṽ − V ζ0)s)(a, x) < (0, 0)

so that there exists (s0, x0) ∈ (−a, a)× R such that, say, ũ(s0, x0) = U ζ0(s0, x0). From
the strong maximum principle we deduce ũ ≡ U ζ0 , which is a contradiction in view of
the boundary condition at s = −a. We conclude that ζ0 ≥ 1 and thus (u, v) ≤ (ũ, ṽ).
Then exchanging the roles of (u, v) and (ũ, ṽ) in the above argument, we get that
(ũ, ṽ) ≤ (u, v) so that finally (ũ, ṽ) = (u, v). This is in contradiction with our initial
hypothesis. We conclude that the nonnegative solution to equation (20) is unique.

2. For given c ∈ R, let (u, v) be the solution to (20). In order to use a sliding technique,
we define

(ut(s, x), vt(s, x)) := (u(s+ t, x), v(s+ t, x))

for t > 0 and (s, x) ∈ [−a, a− t]×R. From the boundary conditions, there is δ > 0 such
that

∀t ∈ (2a− δ, 2a), ∀(s, x) ∈ (−a, a− t)× R, ut(s, x) < u(s, x) and vt(s, x) < v(s, x).

In particular, one can define

t0 := inf{t > 0,∀(s, x) ∈ [−a, a− t], ut(s, x) ≤ u(s, x) and vt(s, x) ≤ v(s, x)}.

Assume by contradiction that t0 > 0. Then there exists (s0, x0) ∈ (−a, a− t0)×R such
that, say, ut0(s0, x0) = u(s0, x0) (notice that s0 = −a and s0 = a− t0 are prevented by
(21)). Since we have

Lε

(
ut0 − u
vt0 − v

)
− c

(
ut0 − u
vt0 − v

)
s

+M

(
ut0 − u
vt0 − v

)
= (f +M)

(
ut0

vt0

)
− (f +M)

(
u
v

)
≤ 0
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and

(
ut0 − u
vt0 − v

)
≤ 0, the strong maximum principle implies ut0 ≡ u, which contradicts

0 < u < Kp. We conclude that t0 = 0, which means that u and v are nonincreasing in
s.

3. Let (c, u, v) and (c̃, ũ, ṽ) two solutions of equation (20) with c < c̃. As above, we define

(ũt(s, x), ṽt(s, x)) := (ũ(s+ t, x), ṽ(s+ t, x)),

and

t0 := inf{t > 0,∀(s, x) ∈ [−a, a− t], ũt(s, x) ≤ u(s, x) and ṽt(s, x) ≤ v(s, x)}.

Assume by contradiction that t0 > 0. Then there again exists (s0, x0) ∈ (−a, a− t0)×R
such that, say, ũt0(s0, x0) = u(s0, x0). Moreover we have

Lε

(
ũt0 − u
ṽt0 − v

)
− c

(
ũt0 − u
ṽt0 − v

)
s

+M

(
ũt0 − u
ṽt0 − v

)
= (f +M)

(
ũt0

ṽt0

)
− (f +M)

(
u
v

)
+ (c̃− c)

(
ũt0

ṽt0

)
s

≤
(

0
0

)
,

since ũs ≤ 0 and ṽs ≤ 0 (recall that ũ and ṽ are decreasing), so that we again derive a

contradiction. As a result t0 = 0 , that is

(
ũ
ṽ

)
≤
(
u
v

)
and then

(
ũ
ṽ

)
<

(
u
v

)
from the

strong maximum principle.

The lemma is proved.

4.3 Estimates along the second homotopy

The second homotopy allows us to get rid of the nonlinearity and the coupling in u and v at
the expense of an increased linear part. For 0 ≤ τ ≤ 1, we consider

Lεu− cus = τ
(
u
(
ru − γu q

K − µ− γuu
)

+ µv
)
− (1− τ)Cu

Lεv − cvs = τ
(
v
(
rv − γv pK − µ− γvv

)
+ µu

)
− (1− τ)Cv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R
(u, v)(a, x) = (0, 0), ∀x ∈ R,

(23)

with

C := −min
x∈R

(
ru(x)− γu(x)

(
q(x)

K
+ C

)
− µ(x), rv(x)− γv(x)

(
p(x)

K
+ C

)
− µ(x), 0

)
(24)

where C is as in Lemma 4.3 item 2.

Lemma 4.7 (A priori estimates along the second homotopy). Let a nonnegative (u, v) ∈
C1
per(Ω) (where Ω = (−a, a) × R and the periodicity is understood only w.r.t. the x ∈ R

variable) and c ∈ R solve (23), with 0 ≤ τ ≤ 1. Then
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1. (u, v) is a classical solution to (23), i.e. (u, v) ∈ C2(Ω).

2. We have
u(s, x) + v(s, x) ≤ C, ∀(s, x) ∈ Ω̄ = [−a, a]× R.

3. (u, v) is positive in Ω.

4. If a ≥ a0 + ā and c ≥ c̄ε, we have sup
Ω0

(u+ v) < ν
2 , where ā is as in Lemma 4.3 item 4.

5. There exists c = c(a) ≥ 0 such that if c ≤ −c(a) then sup
Ω0

(u+ v) > ν.

Proof. Items 1, 2, 3 and 4 can be proved as in Lemma 4.3. We therefore omit the details,
and only focus on item 5.

From item 2 and the choice of C we see that, for any 0 ≤ τ ≤ 1,

Lεu− cus + Cu ≥ 0, u(−a, x) = Kp(x), u(a, x) = 0.

Now, let α± :=
−c±
√
c2+4(1+ε)C

2(1+ε) and m := Kmin
x∈R

(p(x), q(x)) > 0. Then the function θ(s, x) =

θ(s) := m eα−s+α+a−eα+s+α−a
e(α+−α−)a−e(α−−α+)a solves

Lεθ − cθs + Cθ = 0, θ(−a) = m, θ(a) = 0.

From the comparison principle, we infer that u(s, x) ≥ θ(s), and similarly v(s, x) ≥ θ(s), for
all (s, x) ∈ (−a, a)× R. As a result sup

Ω0

(u+ v) ≥ 2 sup(−a0,a0) θ ≥ 2θ(0).

Next, for c ≤ −c1(a) := −1+ε
a ln 4 one has e(α−−α+)a ≤ 1

4 so that

θ(0) ≥ meα+a − eα−a

e(α+−α−)a
= meα−a

(
1− e(α−−α+)a

)
≥ m3eα−a

4
.

Next, thanks to a Taylor expansion, we have

α− =
−c

2(1 + ε)

(
1−

√
1 +

4(1 + ε)C
c2

)
=

−c
2(1 + ε)

(
−2(1 + ε)C

c2
+ o

(
1

c2

))
=
C
c

+ o

(
1

|c|

)
so that there exists c2 = c2(a) > 0 such that for any c ≤ −c2(a) we have eα−a > 2

3 . As a
result when c ≤ −c(a) := −max(c1(a), c2(a)), we have

sup
Ω0

(u+ v) ≥ m ≥ ν0 > ν,

which proves item 5.

4.4 Proof of Theorem 4.1

Equipped with the above estimates, we are now in the position to prove Theorem 4.1 using
three homotopies and the Leray Schauder topological degree. To do so, let us define the
following open subset of R×C1

per(Ω)

Γ :=

{(
c,

(
u
v

))
∈ R×C1

per(Ω) : c ∈ (0, c̄ε + ε),

(
0
0

)
<

(
u
v

)
<

(
C
C

)
in Ω

}
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where Ω = (−a, a)× R, and C > 0 is the constant defined in Lemma 4.3 item 2.
• We develop the first homotopy argument. For 0 ≤ τ ≤ 1, let us define the operator

Fτ : R×C1
per(Ω) → R×C1

per(Ω)

where Fτ

(
c,

(
u
v

))
=

(
c̃,

(
ũ
ṽ

))
, with

c̃ = c+ sup
Ω0

(ũ+ ṽ)− ν

and

(
ũ
ṽ

)
is the unique solution in C1

per(Ω) of the linear problem


Lεũ− cũs = u(ru − γu(u+ (τv + (1− τ) qK ))) + µv − µu
Lεṽ − cṽs = v(rv − γv((τu+ (1− τ) pK ) + v)) + µu− µv

(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R
(u, v)(a, x) = (0, 0), ∀x ∈ R.

From standard elliptic estimates, for any 0 ≤ τ ≤ 1, Fτ maps C1
per(Ω) into C2

per(Ω), which
shows that Fτ is a compact operator in C1

per(Ω). Moreover Fτ depends continuously on the
parameter 0 ≤ τ ≤ 1. The Leray-Schauder topological argument can thus be applied: in
order to prove that the degree is independent of the parameter τ , it suffices to show that
there is no fixed point of Fτ on the boundary ∂Γ, which will be a consequence of estimates

in subsection 4.1. Indeed, let

(
c,

(
u
v

))
= (c, u, v) be a fixed point of Fτ in Γ.

1. From Lemma 4.3, Lemma 4.4 and Remark 4.5 we know that if c = 0 then sup
Ω0

(u+v) > ν

so that c̃ > c, which is absurd. That shows c 6= 0 .

2. From Lemma 4.3 we know that if c ≥ c̄ε then sup
Ω0

(u + v) < ν so that c̃ < c, which is

absurd. That shows c < c̄ε + ε.

3. From Lemma 4.3 we know that u < C and v < C.

4. From Lemma 4.3 and the boundary condition at s = −a, we know that u > 0 and v > 0
in [−a, a) × R. Moreover, we know from Hopf lemma that ∀x ∈ R, us(a, x) < 0 and
vs(a, x) < 0.

As a result, (c, u, v) /∈ ∂Γ so that

deg(Id− F1,Γ, 0) = deg(Id− F0,Γ, 0). (25)

• We now consider the second homotopy. For 0 ≤ τ ≤ 1, let us define the operator

Gτ : R×C1
per(Ω) → R×C1

per(Ω)(
c,

(
u
v

))
7→

(
c̃,

(
ũ
ṽ

))
with again

c̃ = c+ sup
Ω0

(ũ+ ṽ)− ν
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and

(
ũ
ṽ

)
is the unique solutions in C1

per(Ω) of the linear problem


Lεũ− cũs + (1− τ)Cũ = τ

(
u
(
ru − γu q

K − µ− γuu
)

+ µv
)

Lεṽ − cṽs + (1− τ)Cṽ = τ
(
v
(
rv − γv pK − µ− γvv

)
+ µu

)
(u, v)(−a, x) = (Kp(x),Kq(x)), ∀x ∈ R
(u, v)(a, x) = (0, 0), ∀x ∈ R,

and C is defined by (24). Notice that Gτ is a continuous family of compact operators and
that G1 = F0. From Lemma 4.3 and Lemma 4.6, we see that there is no fixed point of F0

such that c ≤ 0 since c 7→
(
u
v

)
is nonincreasing. As a result enlarging Γ into

Γ̃ :=

{(
c,

(
u
v

))
∈ R×C1

per(Ω) : c ∈ (−c(a), c̄ε + ε),

(
0
0

)
<

(
u
v

)
<

(
C
C

)
in Ω

}
,

with c(a) ≥ 0 as in Lemma 4.7, does not alter the degree, that is

deg(Id− F0,Γ, 0) = deg(Id− F0, Γ̃, 0) = deg(Id−G1, Γ̃, 0). (26)

Next, using the estimates of Lemma 4.7 and Hopf lemma as above, we see that there is no
fixed point of Gτ on the boundary ∂Γ̃. We have then

deg(Id−G1, Γ̃, 0) = deg(Id−G0, Γ̃, 0). (27)

Now G0 is independent of (u, v). Since Lε− c∂s+CId is invertible for each c ∈ R, there exists
exactly one solution of (23) with τ = 0 for each c ∈ R, which we denote (uc, vc). Thanks to
a sliding argument, which we omit here, the solutions to (23) with τ = 0 are nonincreasing
in s and c 7→ (uc, vc) is decreasing, so that there exists a unique c ∈ (−c(a), c̄ε + ε), which we
denote c0, such that (c0, uc0 , vc0) is a fixed point to G0.
• Finally a third homotopy allows us to compute the degree. For 0 ≤ τ ≤ 1, let us define

the operator Hτ : R×C1
per(Ω)→ R×C1

per(Ω) by

Hτ (c, u, v) =

(
c+ sup

Ω0

(uc + vc)− ν, τuc + (1− τ)uc0 , τvc + (1− τ)vc0

)
.

Noticing that H1 = G0 and that, again, Hτ has no fixed point on the boundary ∂Γ̃, we obtain

deg(Id−G0, Γ̃, 0) = deg(Id−H1, Γ̃, 0) = deg(Id−H0, Γ̃, 0). (28)

Then since H0 has separated variables and c 7→ sup
Ω0

(uc + vc) is decreasing, we see that

deg(Id−H0, Γ̃, 0) = 1. (29)

• Combining (25), (26), (27), (28) and (29), we get deg(Id − F1,Γ, 0) = 1, which shows
the existence of a solution to (15) in C1

per(Ω). Theorem 4.1 is proved.
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5 Pulsating fronts

From the previous section, we are equipped with a solution to (15) in the strip (−a, a) ×
R. From the estimates of Theorem 4.1 and standard elliptic estimates, we can — up to a
subsequence— let a → ∞ and then recover, for any 0 < ε < 1, a speed 0 < c = cε < c̄ε + ε
and smooth profiles (0, 0) < (u(s, x), v(s, x)) = (uε(s, x), vε(s, x)) < (C,C) solving

−uxx − 2uxs − (1 + ε)uss − cus = u(ru − γu(u+ v)) + µv − µu in R2

−vxx − 2vxs − (1 + ε)vss − cvs = v(rv − γv(u+ v)) + µu− µv in R2

(u, v)(s, ·) is L-periodic
sup
Ω0

(u+ v) = ν.

(30)

Let us mention again that, because of the lack of comparison, we do not know that the above
solution is decreasing in s, in sharp contrast with the previous results on pulsating fronts [36],
[8], [30], [10], [27], [28]. To overcome this lack of monotony, further estimates will be required.

Now, the main difficulty is to show that, letting ε → 0, we recover a nonzero speed and
thus a pulsating front. To do so, it is not convenient to use the (s, x) variables, and we
therefore switch to functions

ũ(t, x) := u(x− ct, x), ṽ(t, x) := v(x− ct, x), (t, x) ∈ R2,

which are consistent with Definition 2.5 of a pulsating front. Hence, after dropping the tildes,
(30) is recast

− ε
c2
utt − uxx + ut = u(ru − γu(u+ v)) + µv − µu in R2

− ε
c2
vtt − vxx + vt = v(rv − γv(u+ v)) + µu− µv in R2

sup
x−ct∈(−a0,a0)

u(t, x) + v(t, x) = ν.
(31)

Also the L periodicity for (30) is transferred into the constraint (6) for (31). Moreover, up to
a translation, we can assume w.l.o.g. that the solution to (31) satisfies

sup
x∈(−a0,a0)

(u(0, x) + v(0, x)) = ν. (32)

Also, though t can be interpreted as a time, we would like to stress out that (31) is not a
Cauchy problem.

Our first goal in this section is to let ε→ 0 in (31) and get the following.

Theorem 5.1 (Letting the regularization tend to zero). There exist a speed 0 < c ≤ c̄0 :=
limε→0 c̄

ε (see Lemma 4.2) and positive profiles (u, v) solving, in the classical sense,{
ut − uxx = u(ru − γu(u+ v)) + µ(v − u) in R2

vt − vxx = v(rv − γv(u+ v)) + µ(u− v) in R2,
(33)

satisfying the constraint (6) and, for some a0 > 0, the normalization

sup
x−ct∈(−a0,a0)

(u+ v) = ν.

The present section is organized as follows. After proving further estimates on solutions
to (31) in subsection 5.1, we prove Theorem 5.1 in subsection 5.2, the main difficulty being
to exclude the possibility of a standing wave. Finally, in subsection 5.3 we conclude the
construction of a pulsating front, thus proving our main result Theorem 2.6.
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5.1 Lower estimates on solutions to (31)

We start by showing a uniform lower bound on the solutions to (31) that have a positive
lower bound. The argument relies on the sign of the eigenvalue λ1, or more precisely that of
the first eigenvalue to the stationary Dirichlet problem in large bouded domains. For b > 0,

we denote (λb1,Φ
b) with Φb(x) :=

(
ϕb(x)
ψb(x)

)
the unique eigenpair solving


−Φb

xx −A(x)Φb = λb1Φb

ϕb(x) > 0, ψb(x) > 0, x ∈ (−b, b)
ϕb(±b) = ψb(±b) = 0,

(34)

and ‖Φb‖L∞(−b,b) = 1. From Lemma C.1, we know that λb1 → λ1 < 0 when b → ∞. We can
thus select a1 > a∗0, with a∗0 as in Theorem 4.1, large enough so that

b ≥ a1 ⇒ λb1 ≤
3λ1

4
. (35)

Also, from Hopf lemma we have Cb := sup
x∈(−b,b)

(
ϕb(x)
ψb(x)

, ψ
b(x)

ϕb(x)

)
< +∞.

Lemma 5.2 (A uniform lower estimate). Let (u(t, x), v(t, x)) be a classical positive solution
to {

βut − κutt − uxx = u(ru − γu(u+ v)) + µv − µu in R2

βvt − κvtt − vxx = v(rv − γv(u+ v)) + µu− µv in R2,
(36)

with κ ≥ 0 and β ∈ R. Let also b ≥ a1 and Φb the solution to (34).
Then there exists a constant α0 = α0(µ0, γ∞, λb1, C

b) > 0 such that if

inf
(t,x)∈R×(−b,b)

min(u(t, x), v(t, x)) > 0

then

∀(t, x) ∈ R× (−b, b),
(
u(t, x)
v(t, x)

)
≥ α0Φb(x).

Proof. Let 0 < η ≤ 1 be given. For α > 0, we define(
Uα,η(t, x)
V α,η(t, x)

)
:= α(1− ηt2)

(
ϕb(x)
ψb(x)

)
.

Then for small α < min

(
inf

(t,x)∈R×(−b,b)
u, inf

(t,x)∈R×(−b,b)
v

)
we have

(
Uα,η(t, x)
V α,η(t, x)

)
≤
(
u(t, x)
v(t, x)

)
for all (t, x) ∈ R × (−b, b), whereas for large α > max(u(0,0),v(0,0))

min(ϕb(0),ψb(0))
one has

(
Uα,η(0, 0)
V α,η(0, 0)

)
>(

u(0, 0)
v(0, 0)

)
. Thus we can define

αη0 = α0 := sup

{
α > 0,∀(t, x) ∈ R× (−b, b),

(
Uα,η(t, x)
V α,η(t, x)

)
≤
(
u(t, x)
v(t, x)

)}
> 0.
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Assume by contradiction that

α0 ≤ α∗0 := min

(
1,

µ0

2γ∞
,

−λb1
2(1 + 2Cb)γ∞

)
.

There exists a touching point (t0, x0) ∈ (−√η,√η) × (−b, b) such that either u(t0, x0) =
Uα0,η(t0, x0) or v(t0, x0) = V α0,η(t0, x0). Assume u(t0, x0) = Uα0,η(t0, x0) for instance. Then
u− Uα0,η reaches a zero minimum at (t0, x0) so that

0 ≥ β (u− Uα0,η)t − κ (u− Uα0,η)tt − (u− Uα0,η)xx
= (βut − κutt − uxx) + α0(1− ηt20)ϕbxx + 2α0βηt0ϕ

b − 2α0κηϕ
b

at point (t0, x0). Using (34) and (36) yields

0 ≥ u(ru − µ− γu(u+ v)) + µv − α0(1− ηt20)(ϕb(ru − µ+ λb1) + µψb) + 2α0ηϕ
b(βt0 − κ)

at point (t0, x0), and since u(t0, x0) = α0(1− ηt20)ϕb(x0) we end up with

0 ≥ u0[−λb1 − γu(x0)(u0 + v0)] + µ(x0)[v0 − α0(1− ηt20)ψb(x0)] + 2α0ηϕ
b(x0)(βt0 − κ), (37)

with the notations u0 = u(t0, x0), v0 = v(t0, x0). Now two cases may occur.
• Assume first that v0 ≤ 2α0(1− ηt20)ψb(x0). Then we have

v0 ≤ 2α0(1− ηt20)
ψb(x0)

ϕb(x0)
ϕb(x0) ≤ 2Cbu0,

and since v0 − α0(1− ηt20)ψb(x0) ≥ 0, we deduce from (37) that

γu(x0)(1 + 2Cb)u2
0 ≥ −λb1u0 + 2α0ηϕ

b(x0)(βt0 − κ),

which in turn implies

γ∞(1+2Cb)α0 ≥ γu(x0)(1+2Cb)u0 ≥ −λb1 +
2α0ηϕ

b(x0)(βt0 − κ)

u0
≥ −λb1−

2η

inf u
(|β||t0|+κ),

since α0 ≤ 1 and ϕb ≤ 1. Since |t0| ≤ 1√
η , one then has

α0 ≥
−λb1

(1 + 2Cb)γ∞
− 2
√
η

|β|+ κ

(1 + 2Cb)γ∞ inf u
. (38)

• On the other hand, assume v0 ≥ 2α0(1− ηt20)ψb(x0). Then we deduce from (37) that

γu(x0)u2
0 ≥ −λb1u0 +

µ(x0)

2
(v0 − 2α0(1− ηt20)ψb(x0)) + v0

(
µ(x0)

2
− γu(x0)u0

)
+2α0ηϕ

b(x0)(βt0 − κ)

≥ −λb1u0 + 2α0ηϕ
b(x0)(βt0 − κ),

since γuu ≤ γuα∗0 ≤
µ0

2 . Arguing as in the first case, we end up with

α0 ≥
−λb1
γ∞
− 2
√
η
|β|+ κ

γ∞ inf u
. (39)
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From (38) , (39) and the symmetric situation where v(t0, x0) = V α0,η(t0, x0), we deduce
that, in any case,

α0 ≥
−λb1

(1 + 2Cb)γ∞
− 2
√
η
|β|+ κ

γ∞ inf(u, v)
. (40)

One sees that for

0 < η < η∗ := min

(
1,

(
−λb1 inf(u, v)

4(|β|+ κ)(1 + 2Cb)

)2
)
,

inequality (40) is a contradiction since it implies α0 > α∗0. Hence we have shown that for any
0 < η < η∗ one has α0 = αη0 > α∗0. In particular

∀η ∈ (0, η∗), ∀(t, x) ∈ R× (−b, b),
(
u(t, x)
v(t, x)

)
≥ α∗0(1− ηt2)

(
ϕb(x)
ψb(x)

)
.

Taking the limit η → 0, we then obtain

∀(t, x) ∈ R× (−b, b),
(
u(t, x)
v(t, x)

)
≥ α∗0Φb(x),

which concludes the proof of Lemma 5.2.

Next we establish a forward-in-time lower estimate for solutions of the (possibly degen-
erate) problem (41). The proof is based on the same idea as in Lemma 5.2, but it is here
critical that the coefficient β of the time-derivative has the right sign. Roughly speaking, the
following lemma asserts that once a population has reached a certain threshold on a large
enough set, it cannot fall under that threshold at a later time.

Lemma 5.3 (A forward-in-time lower estimate). Let (u(t, x), v(t, x)) be a classical positive
solution to {

βut − κutt − uxx = u(ru − γu(u+ v)) + µv − µu in R2

βvt − κvtt − vxx = v(rv − γv(u+ v)) + µu− µv in R2,
(41)

with κ ≥ 0 and β ≥ 0. Let also b ≥ a1 and Φb the solution to (34).
Then there exists a constant α0 = α0(µ0, γ∞, λb1, C

b) > 0 such that if 0 < α < α0 and

∀x ∈ (−b, b), αΦb(x) <

(
u(0, x)
v(0, x)

)
, (42)

then

∀t > 0, ∀x ∈ (−b, b), αΦb(x) ≤
(
u(t, x)
v(t, x)

)
.

Proof. Let

0 < α < α0 := min

(
1,

−λb1
2(1 + 2Cb)γ∞

,
µ0

2γ∞

)
and assume (42). For η > 0 we define

ζ(t, x) =

(
ζu(t, x)
ζv(t, x)

)
:= α(1− ηt)

(
ϕb(x)
ψb(x)

)
.
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From (42), we can define

η0 := inf

{
η ∈ R : ∀t ≥ 0,∀x ∈ [−b, b],

(
u(t, x)
v(t, x)

)
≥ ζ(t, x)

}
.

Assume by contradiction that η0 > 0. Then there exists t0 > 0 and x0 ∈ (−b, b) such that,
say, u(t0, x0) = ζu(t0, x0). Then at point (t0, x0) we have

0 ≥ β(u− ζu)t − κ(u− ζu)tt − (u− ζu)xx = u(ru − γu(u+ v)) + µ(v − u) + ζuxx + βαηϕb.

Using (34) and u(t0, x0) = α(1− η0t0)ϕb(x0), we end up with

0 ≥ u0(−λb1 − γu(x0)(u0 + v0)) + µ(x0)(v0 − ζv(t0, x0)), (43)

with the notations u0 = u(t0, x0), v0 = v(t0, x0) and thanks to β ≥ 0. Now two cases may
occur.
• Assume first that v0 ≤ 2ζv(t0, x0). Then v0 ≤ 2 ζv(t0,x0)

ζu(t0,x0)ζu(t0, x0) ≤ 2Cbζu(t0, x0) =

2Cbu0, so that (43) yields (recall that v0 ≥ ζv(t0, x0))

γu(x0)(1 + 2Cb)u2
0 ≥ γu(x0)(u0 + v0)u0 ≥ −λb1u0.

As a result u0 > α0, which is a contradiction.
• Assume now that v0 ≥ 2ζv(t0, x0). Then we deduce from (43) that

γu(x0)u2
0 ≥ −λb1u0 + v0

(
µ(x0)

2
− γu(x0)u0

)
+
µ(x0)

2
(v0 − 2ζv(t0, x0))

≥ −λb1u0 +
1

2
µ(x0)(v0 − 2ζv(t0, x0)),

since u0 ≤ α0 ≤ µ0

2γ∞ . As a result u0 ≥
−λb1
γ∞ > α0, which is also a contradiction.

Thus η0 ≤ 0 and in particular

∀t > 0,∀x ∈ (−b, b),
(
u(t, x)
v(t, x)

)
≥ α

(
ϕb(x)
ψb(x)

)
,

which concludes the proof of Lemma 5.3.

5.2 Proof of Theorem 5.1

In this subsection, we prove that a well-chosen series of solutions to equation (31) cannot
converge, as ε → 0, to a standing wave (c = 0). In other words, we prove Theorem 5.1,
making a straightforward use of the crucial Lemma 5.4. The rough idea of the proof of
Lemma 5.4 is that a standing wave cannot stay in the neighborhood of 0 for a long time.
Hence the normalization allows us to prevent a sequence of solutions from converging to a
standing wave, provided ν is chosen small enough. Notice also that the interior gradient
estimate for elliptic systems of Lemma B.1 will be used.

In the sequel we select a1 > a∗0 as in (35), recall that λa11 denotes the eigenvalue of problem
(34) in the domain (−a1, a1), and define

ν∗ :=
1

2
min (ν0, ν) > 0,

where ν := α0 inf
x∈(−a∗0,a∗0)

min(ϕa1(x), ψa1(x)), with α0 > 0 the constant in Lemma 5.2 in the

domain (−a1, a1).
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Lemma 5.4 (Nonzero limit speed). Let (εn, cn, u
n(t, x), vn(t, x)) be a sequence such that

εn > 0, εn → 0, cn 6= 0, (un, vn) is a positive solution to problem (31) with ε = εn, c = cn,
0 < ν < ν∗ and a0 > a1. Then

lim inf
n→∞

cn > 0. (44)

Proof. Assume by contradiction that there is a sequence as in Lemma 5.4 with lim cn = 0.
Define the sequence κn := εn

c2n
> 0 which, up to an extraction, tends to +∞, or to some

κ ∈ (0,+∞) or to 0. In each case we are going to construct a couple of functions (u, v) that
shows a contradiction. We refer to [8] or to [10] for a similar trichotomy.

Case 1: κn → +∞. Defining (ũn, ṽn)(t, x) := (un, vn)(
√
κnt, x), problem (31) is recast

−untt − unxx + 1√
κn
unt = un(ru − γu(un + vn)) + µvn − µun

−vntt − vnxx + 1√
κn
vnt = vn(rv − γv(un + vn)) + µun − µvn

sup
x−√εnt∈(−a0,a0)

un(t, x) + vn(t, x) = ν,
(45)

where we have dropped the tildes. From standard elliptic estimates, this sequence converges,
up to an extraction, to a classical nonnegative solution (u, v) of{

−utt − uxx = u(ru − γu(u+ v)) + µv − µu
−vtt − vxx = v(rv − γv(u+ v)) + µu− µv, (46)

and since (un, vn) satisfies the third equality in (45) together with (32), (u, v) satisfies
sup

(t,x)∈R×(−a0,a0)
(u + v) = ν. In particular, (u, v) is nontrivial and thus positive by the strong

maximum principle.

Now, applying Lemma 5.3 to (u, v) with α := 1
2 min

(
inf

x∈(−a0,a0)
(u(0, x), v(0, x)), α0

)
> 0,

we get

∀t > 0, ∀x ∈ (−a0, a0),

(
u(t, x)
v(t, x)

)
≥ αΦa0(x).

Next, thanks to standard elliptic estimates, the sequence

(un(t, x), vn(t, x)) := (u(t+ n, x), v(t+ n, x))

converges, up to an extraction, to a solution (u, v) of (46) — that we denote again by (u, v)—
which satisfies

sup
(t,x)∈R×(−a0,a0)

(u+ v) = ν, (47)

and

∀(t, x) ∈ R× (−a0, a0),

(
u(t, x)
v(t, x)

)
≥ αΦa0(x).

In particular, since a0 > a1, the latter implies

inf
(t,x)∈R×(−a1,a1)

min(u, v) > 0. (48)

Case 2: κn → κ ∈ (0,+∞). Thanks to standard elliptic estimates, the sequence (un, vn)
converges, up to an extraction, to a solution (u, v) of{

−κutt − uxx + ut = u(ru − γu(u+ v)) + µv − µu
−κvtt − vxx + vt = v(rv − γv(u+ v)) + µu− µv, (49)
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and since (un, vn) satisfies the third equality in (31) together with (32), (u, v) satisfies
sup

(t,x)∈R×(−a0,a0)
(u + v) = ν. In particular, (u, v) is nontrivial and thus positive by the strong

maximum principle.
Now, using Lemma 5.3 and a positive large shift in time exactly as in Case 1, we end up

with a solution (u, v) to (49) which satisfies (47) and (48).

Case 3: κn → 0. In this case, the elliptic operator becomes degenerate as n→∞, so that we
cannot use the standard elliptic theory. The idea is then to use a Bernstein interior gradient
estimate for elliptic systems that we present and prove in Appendix B.

Applying Lemma B.1 to the series (un, vn) solving (31), we get a uniform L∞ bound for
(unx, v

n
x). Furthermore by differentiating (31) with respect to x, we see that (unx, v

n
x) solves

a system for which Lemma B.1 still applies. As a result, we get a uniform L∞ bound for
(unxx, v

n
xx).

Let us show that there is also a uniform L∞ bound for (unt , v
n
t ). From the uniform bounds

found above, we can write
unt − κnuntt = Fn(t, x).

Let F := max(1, supn ‖Fn‖L∞(R2)) < +∞. Assume by contradiction that there is a point
(t0, x0) where unt (t0, x0) > 2F . From the above equation we deduce that unt (t, x0) > 2F
remains valid for t ≥ t0, and thus

κnu
n
tt(t, x0) > F, ∀t ≥ t0.

Integrating twice, we get

un(t, x0) ≥ F (2(t− t0) +
1

2κn
(t− t0)2)− ‖un‖L∞ , ∀t ≥ t0.

Letting t → ∞ we get that un is unbounded, a contradiction. Thus, unt (t, x) ≤ 2F for any
(t, x) ∈ R2 and, in a straightforward way, |unt (t, x)|, |vnt (t, x)| ≤ 2F for any (t, x) ∈ R2.

Since we have uniform L∞ bounds for (un, vn), (unx, v
n
x) and (unt , v

n
t ), there are u and v in

H1
loc(R2) such that, up to a subsequence,

(un, vn)→ (u, v) in L∞loc(R2), (unx, v
n
x , u

n
t , v

n
t ) ⇀ (ux, vx, ut, vt) in L2

loc(R2) weak.

As a result, letting n→∞ into (31) yields{
ut − uxx = u(ru − γu(u+ v)) + µv − µu
vt − vxx = v(rv − γv(u+ v)) + µu− µv (50)

in a weak sense. From parabolic regularity, (u, v) is actually a classical solution to (50). Since
the convergence occurs locally uniformly (32) and since (un, vn) satisfies the third equality
in (31) together with (32), (u, v) satisfies sup

(t,x)∈R×(−a0,a0)
(u + v) = ν. In particular, (u, v) is

nontrivial and thus positive by the strong maximum principle.
Now, using Lemma 5.3 and a positive large shift in time as in Case 1 (parabolic estimates

replacing elliptic estimates), we end up with a solution (u, v) to (50) which satisfies (47) and
(48).
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Conclusion. In any of the three above cases, we have constructed a classical solution (u, v)
to (β ≥ 0, κ ≥ 0) {

βut − κutt − uxx = u(ru − γu(u+ v)) + µv − µu
βvt − κvtt − vxx = v(rv − γv(u+ v)) + µu− µv,

which satisfies (47) and (48). Applying Lemma 5.2, we find that (recall that a1 > a∗0)

inf
R×(−a∗0,a∗0)

(u, v) ≥ α0 inf
(−a∗0,a∗0)

(ϕa1 , ψa1) = ν.

But, since a0 > a∗0 the above implies

sup
R×(−a0,a0)

(u+ v) ≥ 2 inf
R×(−a∗0,a∗0)

(u, v) ≥ 2ν > ν∗ > ν,

which contradicts (47). Lemma 5.4 is proved.

We are now in the position to prove Theorem 5.1.

Proof of Theorem 5.1. From the beginning of Section 5 and Lemma 5.4 we can consider a
sequence (εn, cn, u

n(t, x), vn(t, x)) such that εn > 0, εn → 0, 0 < cn ≤ c̄εn + εn, (un, vn) is
a positive solution to problem (31) with ε = εn, c = cn, ν < ν∗ and a0 > a1, satisfying the
constraint (6), and the crucial fact

lim
n→∞

cn > 0. (51)

Notice that, as a by-product, this shows that c̄0 := limε→0 c̄
ε > 0 (see Lemma 4.2). We can

now repeat the argument in the proof of Lemma 5.4 Case 3 and extract a sequence (un, vn)
which converges to a classical solution (u, v) of equation (33), satisfying the normalization

sup
x−ct∈(−a0,a0)

(u+ v) = ν

as well as the constraint (6). Theorem 5.1 is proved.

5.3 Proof of Theorem 2.6

We are now close to conclude the proof of our main result of construction of a pulsating
front, Theorem 2.6. From Theorem 5.1, it only remains to prove the boundary conditions (7),
namely

lim inf
t→+∞

(
u(t, x)
v(t, x)

)
>

(
0
0

)
, lim

t→−∞

(
u(t, x)
v(t, x)

)
=

(
0
0

)
, locally uniformly w.r.t. x,

to match Definition 2.5 of a pulsating front. The former is derived by another straighforward
application of Lemma 5.3, while the latter is proved below. Hence, Theorem 2.6 is proved.

Lemma 5.5 (Zero limit behavior). For a1 > a∗0 and ν∗ > 0 as in subsection 5.2, let c > 0 and
(u, v) be as in Theorem 5.1, satisfying in particular the normalization sup

x−ct∈(−a0,a0)
(u+v) = ν

with ν < ν∗ and a0 > a1. Then

lim
t→−∞

max(u, v)(t, x)→ 0, locally uniformly w.r.t. x.
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Proof. We first claim that inf
R×(−a0,a0)

min (u, v) = 0. Indeed if this is not the case then,

in particular, inf
R×(−a1,a1)

min (u, v) > 0, and we derive a contradiction via Lemma 5.2 by a

straightforward adaptation of the Conclusion of the proof of Lemma 5.4, because R×(−a1, a1)
intersects {(t, x) : x− ct ∈ (−a0, a0)}.

Now let a > a0 be given and assume by contradiction that there is m > 0 and a sequence
tn → −∞ such that sup

x∈(−a,a)
max (u, v)(tn, x) ≥ m. Thanks to the Harnack inequality for

parabolic systems, see [23, Theorem 3.9], there is C > 0 such that

∀n ∈ N, inf
x∈(−a,a)

min (u, v)(tn + 1, x) ≥ 1

C
sup

x∈(−a,a)
max (u+ v)(tn, x) ≥ m

C
.

We now use our forward-in-time lower estimate, see Lemma 5.3, in (−a, a) and with α :=
1
2 min(α0,

m
C ) > 0 to get

∀n ∈ N, ∀t > tn + 1, ∀x ∈ (−a, a),

(
u(t, x)
v(t, x)

)
≥ α

(
ϕa(x)
ψa(x)

)
.

Since tn → −∞ and a > a0, the above implies

inf
(t,x)∈R×(−a0,a0)

min (u, v)(t, x) ≥ α inf
x∈(−a0,a0)

(ϕa, ψa)(x) > 0.

This is a contradiction and the lemma is proved.

A Topological theorems

Let us first recall the classical Krein-Rutman theorem.

Theorem A.1 (Krein-Rutman theorem). Let E be a Banach space. Let C ⊂ E be a closed
convex cone of vertex 0, such that C ∩ −C = {0} and IntC 6= ∅. Let T : E → E be a linear
compact operator such that T (C\{0}) ⊂ IntC.

Then, there exists u ∈ IntC and λ1 > 0 such that Tu = λ1u. Moreover, if Tv = µv for
some v ∈ C\{0}, then µ = λ1. Finally, we have

λ1 = max{|µ|, µ ∈ σ(T )},

and the algebraic and geometric multiplicity of λ1 are both equal to 1.

We now quote some results on the structure of the solution set for nonlinear eigenvalue
problems in a Banach space, more specifically when bifurcation occurs. For more details and
proofs, we refer the reader to the works of Rabinowitz [34, 35], Crandall and Rabinowitz [18].
See also earlier related results of Krasnosel’skii [32] and the book of Brown [16].

Theorem A.2 (Bifurcation from eigenvalues of odd multiplicity). Let E be a Banach space.
Let F : R× E → E be a (possibly nonlinear) compact operator such that

∀λ ∈ R, F (λ, 0) = 0.
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Assume that F is Fréchet differentiable near (λ, 0) with derivative λT . Let us define

S := {(λ, x) ∈ R× E\{0} : F (λ, x) = x}.

Let us assume that 1
µ ∈ σ(T ) is of odd multiplicity.

Then there exists a maximal connex compound Cµ ⊂ S such that (µ, 0) ∈ Cµ and either

1. Cµ is not bounded in R× E, or

2. there exists µ∗ 6= µ with 1
µ∗ ∈ σ(T ) and (µ∗, 0) ∈ Cµ.

When the eigenvalue is simple, one can actually refine the above result as follows.

Theorem A.3 (Bifurcation from simple eigenvalues). Let the assumptions of Theorem A.2
hold. Assume further that 1

µ ∈ σ(T ) is simple. Let T ∗ be the dual of T , and l ∈ E′ an

eigenvector of T ∗ associated with 1
µ with ‖l‖ = 1 (recall that 1

µ is of multiplicity 1 for both T
and T ∗). Let us define

K+
ξ,η := {(λ, u) ∈ R× E, |λ− µ| < ξ, 〈l, u〉 > η‖u‖}, K−ξ,η := −K+

ξ,η.

Then Cµ\{(µ, 0)} contains two connex compounds C+
µ and C−µ which satisfy

∀ν ∈ {+,−}, ∀ξ > 0,∀η ∈ (0, 1),∃ζ0 > 0,∀ζ ∈ (0, ζ0), (Cνµ ∩Bζ) ⊂ Kν
ξ,η,

where Bζ := {(λ, u) ∈ R × E, |λ − µ| < ζ, ‖u‖ < ζ} is the ball of center (µ, 0) and radius ζ.
Moreover, both C+

µ and C−µ satisfies the alternative in Theorem A.2.

B A Bernstein-type interior gradient estimate for elliptic sys-
tems

We present here some L∞ gradient estimates for regularizations of degenerate elliptic systems,
which are uniform with respect to the regularization parameter κ ≥ 0. The result below
generalizes the result of Berestycki and Hamel [9], which is concerned with scalar equations.

Lemma B.1 (Interior gradient estimates). Let Ω be an open subset of R2. Let f, g : Ω×R2 →
R be two C1 functions with bounded derivatives. Let 0 ≤ κ ≤ 1 and (u(y, x), v(y, x)) be a
solution of the class C3 of the system{

−κuyy − uxx + uy = f(y, x, u, v) in Ω,
−κvyy − vxx + vy = g(y, x, u, v) in Ω.

(52)

Then, for all (y, x) ∈ Ω,

|ux(y, x)|2 + |vx(y, x)|2 + κ|uy(y, x)|2 + κ|vy(y, x)|2 ≤ C
(

1 +
1

(dist((y, x), ∂Ω))2

)
where

C = C(‖u‖L∞(B) + ‖v‖L∞(B), oscBu, oscBv, ‖f‖C0,1(B×[u,u]×[v,v]), ‖g‖C0,1(B×[u,u]×[v,v])),

with B the ball of center (y, x) and radius dist((y,x),∂Ω)
2 in R2, u := infB u, u := supB u,

v := infB v, v := supB v. In particular, this estimate is independent on the regularization
parameter 0 ≤ κ ≤ 1.
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Proof. Let h be the smooth function defined on R by

h(z) :=

{
exp

(
z2

z2−1

)
|z| < 1

0 |z| ≥ 1.

Let us then define C0 := max(‖h‖L∞ , ‖h′‖L∞ , ‖h′′‖L∞) and ζ(Y,X) := h
(√

Y 2+X2

2

)
.

Let (y0, x0) ∈ Ω be a given point, d0 := dist((y0, x0), ∂Ω), d := min
(
d0
2 , 1

)
, B0 the ball

of center (y0, x0) and radius d. Let χ be the function defined by

∀(y, x) ∈ R2, χ(y, x) := ζ

(
y − y0

d
,
x− x0

d

)
.

Finally, let P u and P v be defined in Ω by

P u(y, x) := χ2(y, x)(u2
x(y, x) + κu2

y(y, x)) + λu2(y, x) + ρex−x0

P v(y, x) := χ2(y, x)(v2
x(y, x) + κv2

y(y, x)) + λv2(y, x) + ρex−x0 ,

where λ > 0 and ρ > 0 are constants to be fixed later. Our goal is to apply the maximum
principle to the function P := P u + P v for convenient values of λ and ρ. We present below
the computations on P u only and reflect them on P v.

We first compute the partial derivatives of P u and get

P uy = 2χyχu
2
x + 2χ2uxyux + 2κ(χyχu

2
y + χ2uyyuy) + 2λuyu

P uyy = 2(χyyχ+ χ2
y)u

2
x + 8χyχuxyux + 2χ2(uxyyux + u2

xy)

+κ[2(χyyχ+ χ2
y)u

2
y + 8χyχuyyuy + 2χ2(uyyyuy + u2

yy)]

+2λ(uyyu+ u2
y)

P uxx = 2(χxxχ+ χ2
x)u2

x + 8χxχuxxux + 2χ2(uxxxux + u2
xx)

κ[2(χxxχ+ χ2
x)u2

y + 8χxχuxyuy + 2χ2(uyxxuy + u2
yx)]

+2λ(uxxu+ u2
x) + ρex−x0 .

Let M := ∂y − κ∂yy − ∂xx. Then we have

MP u = 2
[
χyχ− κ(χyyχ+ χ2

y)− (χxxχ+ χ2
x)
]
u2
x

+2κ
[
χyχ− κ(χyyχ+ χ2

y)− (χxxχ+ χ2
x)
]
u2
y

+2χ2 [uxy − κuxyy − uxxx]ux
+2κχ2 [uyy − κuyyy − uyxx]uy
−2
[
κ(χ2u2

xy + 4χyχuxyux) + (χ2u2
xx + 4χxχuxxux)

]
−2κ[κ(4χyχuyuyy + χ2u2

yy) + (4χxχuyuxy + χ2u2
xy)]

+2λ
[
(uy − κuyy − uxx)u− κu2

y − u2
x

]
−ρex−x0 .

We now reformulate some of the lines of the above equality, starting with lines three and four.
We differentiate the first equation of system (52) with respect to x to obtain

2χ2 [uxy − κuxyy − uxxx]ux = 2χ2(fx + uxfu + vxfv)ux
≤ χ2(u2

x + f2
x) + 2χ2u2

x|fu|+ χ2(u2
x + v2

x)|fv|,
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and then with respect to y to get

2χ2 [uyy − κuyyy − uyxx]uy = 2χ2(fy + uyfu + vyfv)uy
≤ χ2(u2

y + f2
y ) + 2χ2u2

y|fu|+ χ2(u2
y + v2

y)|fv|.

As far as lines five and six are concerned, we use the factorizations

χ2u2
xy + 4χyχuxyux = (χuxy + 2χyux)2 − 4χ2

yu
2
x

χ2u2
xx + 4χxχuxxux = (χuxx + 2χxux)2 − 4χ2

xu
2
x

χ2u2
yy + 4χyχuyyuy = (χuyy + 2χyuy)

2 − 4χ2
yu

2
y

χ2u2
xy + 4χxχuxyuy = (χuxy + 2χxuy)

2 − 4χ2
xu

2
y.

For line seven, we use the first equation in (52) to write (uy−κuyy−uxx)u = fu. As a result,
we collect

MP u ≤ 2
[
χyχ− κχyyχ− χxxχ+ 3χ2

x + 3κχ2
y + χ2

(
|fu|+ 1+|fv |

2

)
− λ

]
(u2
x + κu2

y)

+2λfu+ χ2(v2
x + κv2

y)|fv|+ χ2(f2
x + κf2

y )− ρex−x0 ,

and, similarly,

MP v ≤ 2
[
χyχ− κχyyχ− χxxχ+ 3χ2

x + 3κχ2
y + χ2

(
|gv|+ 1+|gu|

2

)
− λ

]
(v2
x + κv2

y)

+2λgv + χ2(u2
x + κu2

y)|gu|+ χ2(g2
x + κg2

y)− ρex−x0 .

Notice that |χ| ≤ C0, |χx|, |χy| ≤ C0
d , |χxx|, |χyy| ≤ C0

d2
and recall that κ, d ≤ 1. Hence,

putting everything together, we arrive at

MP ≤
(

20
C2

0
d2

+ 4C2
0 (‖f‖C0,1 + ‖g‖C0,1) + C2

0 − λ
)

(u2
x + v2

x + κu2
y + κv2

y)

+2λ(‖f‖L∞ + ‖g‖L∞)(‖u‖L∞ + ‖v‖L∞) + 2C2
0 (‖f‖2C0,1 + ‖g‖2C0,1)− 2ρex−x0 .

It is now time to specify{
λ = 20

C2
0
d2

+ 4C2
0 (‖f‖C0,1 + ‖g‖C0,1) + C2

0 > 0
ρ = e

2

[
2λ(‖f‖L∞ + ‖g‖L∞)(‖u‖L∞ + ‖v‖L∞) + 2C2

0 (‖f‖2C0,1 + ‖g‖2C0,1) + 1
]
> 0.

As a result we have MP (y, x) < 0 for all (y, x) ∈ B0 (since then x−x0 ≥ −1). The maximum
principle then implies

P (y0, x0) ≤ max
(y,x)∈∂B0

P (y, x).

Since χ(y0, x0) = 1 and χ(y, x) = 0 when (y, x) ∈ ∂B0, the above inequality implies

(u2
x + v2

x + κu2
y + κv2

y)(y0, x0) ≤ λ(‖u‖2L∞ + ‖v‖2L∞)− λ(u2 + v2)(y0, x0) + 2ρe

≤ 2λ(‖u‖L∞oscB0(u) + ‖v‖L∞oscB0(v)) + 2ρe

≤ K{(‖u‖L∞ + ‖v‖L∞)(oscB0(u) + oscB0(v)

+‖f‖C0,1 + ‖g‖C0,1) + ‖f‖2C0,1 + ‖g‖2C0,1 + 1}
(

1 +
1

d2

)
using the expressions of λ and ρ above, for a universal positive constant K > 0 and where
the C0,1 norms of f , g are taken on B0 × [infB0 u, supB0

u] × [infB0 v, supB0
v]. This proves

the lemma.
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C Dirichlet and periodic principal eigenvalues

We prove here that the principal eigenvalue with Dirichlet boundary conditions in a ball
converges to the principal eigenvalue with periodic boundary conditions, when the radius
tends to +∞.

Lemma C.1 (Dirichlet and periodic principal eigenvalues). Let A ∈ L∞(R;S2(R)) be a
symmetric cooperative matrix field that is periodic with period L > 0. Let λ1 be the principal
eigenvalue of the operator −∂xx −A(x) with periodic boundary conditions, that is

−
(
ϕ
ψ

)′′
−A(x)

(
ϕ
ψ

)
= λ1

(
ϕ
ψ

)
, (53)

with ϕ,ψ ∈ H1
per and ϕ > 0, ψ > 0. For R > 0, let λR1 be the principal eigenvalue of the

operator −∂xx −A(x) with Dirichlet boundary conditions on (−R,R), that is

−
(
ϕR

ψR

)′′
−A(x)

(
ϕR

ψR

)
= λR1

(
ϕR

ψR

)
, (54)

with ϕR, ψR ∈ H1
0 (−R,R) and ϕR > 0, ψR > 0. Then, there exists C > 0 depending only on

A such that, for all R > 0,

λ1 ≤ λR1 ≤ λ1 +
C

R
.

Proof. Without loss of generality we assume L = 1. Inequality λ1 ≤ λR1 is very classical,
see [11, Proposition 4.2] or [1, Proposition 3.3] for instance, and we omit the details. Also,
the same classical argument yields that R 7→ λR1 is nonincreasing so it is enough to prove
λR1 ≤ λ1 + C

R when R = 2, 3, ....
We consider a smooth auxiliary function η : R→ R satisfying

η ≡ 1 on (−∞, 0], 0 < η < 1 on (0, 1), η ≡ 0 on [1,∞).

Since the operator in (54) is self-adjoint in the domain (−R,R), the principal eigenvalue λR1
is given by the Rayleigh quotient

λR1 = inf
Ψ∈H1

0(−R,R),Ψ6=0
Q(Ψ,Ψ), Q(Ψ,Ψ) :=

∫ R
−R( tΨxΨx − tΨA(x)Ψ)dx∫ R

−R
tΨΨdx

.

In particular we have λR1 ≤ Q(Θ,Θ), with Θ the H1
0(−R,R) test function defined by

Θ(x) := η(−R+ 1− x)η(−R+ 1 + x)Φ(x), Φ(x) :=

(
ϕ(x)
ψ(x)

)
,

where ϕ,ψ are as in (53), with the normalization
∫ 1

0
tΦΦdx = 1. We then have Q(Θ,Θ) =

Q1(Θ) +Q2(Θ), where

Q1(Θ) :=

∫
|x|≤R−1( tΘxΘx − tΘA(x)Θ)dx∫ R

−R
tΘΘdx

, Q2(Θ) :=

∫
R−1≤|x|≤R( tΘxΘx − tΘA(x)Θ)dx∫ R

−R
tΘΘdx

.
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We write

Q1(Θ) =

∫
|x|≤R−1( tΘxΘx − tΘA(x)Θ)dx∫

|x|≤R−1
tΘΘdx

∫ R−1
−(R−1)

tΘΘdx∫ R
−R

tΘΘdx
= λ1

∫ R−1
−(R−1)

tΘΘdx∫ R
−R

tΘΘdx
,

thanks to Θ ≡ Φ ≡
(
ϕ
ψ

)
on (−(R− 1), R− 1) and the 1-periodicity of ϕ, ψ (recall that R− 1

is an integer). As a result

|Q1(Θ)− λ1| = |λ1|

∫
R−1<|x|<R

tΘΘdx∫ R
−R

tΘΘdx
≤ |λ1|

∫
R−1<|x|<R

tΦΦdx∫ R−1
−(R−1)

tΦΦdx
= |λ1|

1

R− 1
,

since 0 ≤ η ≤ 1. On the other hand one can see that, for a constant C2 > 0 depending only
on ‖η′‖L∞(R) and ‖A‖L∞(R;S2(R)),∣∣∣∣∣

∫
R−1<|x|<R

( tΘxΘx − tΘA(x)Θ)dx

∣∣∣∣∣ ≤ C2

∫
R−1<|x|<R

(tΦΦ +t ΦxΦx)dx

= 2C2

∫
0<|x|<1

(tΦΦ +t ΦxΦx)dx =: C ′2

so that

|Q2(Θ)| ≤ C ′2∫ R
−R

tΘΘdx
≤ C ′2∫ R−1

−(R−1)
tΦΦdx

=
C ′2

(2R− 2)
∫ 1

0
tΦΦdx

=
C ′2

(2R− 2)
.

This concludes the proof of the lemma.
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