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ASYMPTOTIC DISTRIBUTIONS ASSOCIATED TO
PIECEWISE QUASI-POLYNOMIALS

PAUL-EMILE PARADAN AND MICHÈLE VERGNE

1. Introduction

Let V be a finite dimensional real vector space equipped with a
lattice Λ. Let P ⊂ V be a rational polyhedron. The Euler-Maclaurin
formula ([4], [2]) gives an asymptotic estimate, when k goes to ∞, for
the Riemann sum

∑

λ∈kP∩Λ ϕ(λ/k) of the values of a test function ϕ at
the sample points 1

kΛ∩P of P , with leading term kdimP
∫

P ϕ. Here we
consider the slightly more general case of a weighted sum. Let q(λ, k)
be a quasi-polynomial function on Λ ⊕ Z. We consider, for k ≥ 1, the
distribution

⟨Θ(P ; q)(k),ϕ⟩ =
∑

λ∈kP∩Λ

q(λ, k)ϕ(λ/k)

and we show (Proposition 1.2) that the function k (→ ⟨Θ(P ; q)(k),ϕ⟩
admits an asymptotic expansion when k tends to ∞ in powers of 1/k
with coefficients periodic functions of k.
We extend this result to an algebra S(Λ) of piecewise quasi-polynomial

functions on Λ ⊕ Z ⊂ V ⊕ R. A function m(λ, k) (λ ∈ Λ, k ∈ Z) in
S(Λ) is supported in an union of polyhedral cones in V ⊕R. The main
feature of a function m(λ, k) in S(Λ) is that m(λ, k) is entirely deter-
mined by its large behavior in k. We associate to m(λ, k) a formal
series A(m) of distributions on V encoding the asymptotic behavior of
m(λ, k) when k tends to ∞.
The motivating example is the case whereM is a projective manifold,

and L the corresponding ample bundle. If T is a torus acting on M ,
then write, for t ∈ T ,

dimM
∑

i=0

(−1)iTr(t, H i(M,O(Lk))) =
∑

λ

m(λ, k)tλ

where λ runs over the lattice Λ of characters of T . The correspond-
ing asymptotic expansion of the distribution

∑

λm(λ, k)δλ/k is an im-
portant object associated to M involving the Duistermaat-Heckmann
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2 PAUL-EMILE PARADAN AND MICHÈLE VERGNE

measure and the Todd class of M , see [9] for its determination. The de-
termination of similar asymptotics in the more general case of twisted
Dirac operators is the object of a forthcoming article [7].
Thus let m ∈ S(Λ), and consider the sequence

Θ(m)(k) =
∑

λ∈Λ

m(λ, k)δλ/k

of distributions on V and its asymptotic expansion A(m) when k tends
to ∞. Let T be the torus with lattice of characters Λ. If g ∈ T is an
element of finite order, then mg(λ, k) := gλm(λ, k) is again in S(Λ).
Our main result (Theorem 1.8) is that the piecewise quasi-polynomial
function m is entirely determined by the collections of asymptotic ex-
pansions A(mg), when g varies over the set of elements of T of finite
order.
We also prove (Proposition 2.1) a functorial property of A(m) under

pushforward.
We use these results to give new proofs of functoriality of the formal

quantization of a symplectic manifold [5] or, more generally, of a spinc
manifold [6].
For these applications, we also consider the case where V is a Cartan

subalgebra of a compact Lie group, and anti-invariant distributions on
V of a similar nature.

1.1. Piecewise polynomial functions. Let V be a real vector space
equipped with a lattice Λ. Usually, an element of V is denoted by ξ,
and an element of Λ by λ. In this article, a cone C will always be a
closed convex polyhedral cone, and 0 ∈ C.
Let Λ∗ be the dual lattice, and let g ∈ T := V ∗/Λ∗. If G ∈ V ∗ is a

representative of g and λ ∈ Λ, then we denote gλ = e2iπ⟨G,λ⟩.
A periodic function m on Λ is a function such that there exists a

positive integer D (we do not fix D) such that m(λ0 + Dλ) = m(λ0)
for λ,λ0 ∈ Λ. The space of such functions is linearly generated by
the functions λ (→ gλ for g ∈ T of finite order. By definition, the al-
gebra of quasi-polynomial functions on Λ is generated by polynomials
and periodic functions on Λ. If V0 is a rational subspace of V , the
restriction of m to Λ0 := Λ ∩ V0 is a quasi-polynomial function on Λ0.
The space of quasi-polynomial functions is graded: a quasi-polynomial
function homogeneous of degree d is a linear combination of functions
tλh(λ) where t ∈ T is of finite order, and h an homogeneous polyno-
mial on V of degree d. Let q(λ) be a quasi-polynomial function on
Λ. There is a sublattice Γ of Λ of finite index dΓ such that for any
given γ ∈ Λ, we have q(λ) = pγ(λ) for any λ ∈ γ + Γ where pγ(ξ)
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is a (uniquely determined) polynomial function on V . Then define
qpol(ξ) = 1

dΓ

∑

γ∈Λ/Γ pγ(ξ), a polynomial function on V . This polyno-
mial function is independent of the choice of the sublattice Γ. Then
q(λ) − qpol(λ) is a linear combination of functions of the form tλh(λ)
with h(λ) polynomial and t ̸= 1.
Using the Lebesgue measure associated to Λ, we identify generalized

functions on V and distributions on V . If θ is a generalized function on
V , we may write

∫

V θ(ξ)ϕ(ξ)dξ for its value on the test function ϕ. If
R is a rational affine subspace of V , R inherits a canonical translation
invariant measure. If P is a rational polyhedron in V , it generates a
rational affine subspace of V , and

∫

P ϕ is well defined for ϕ a smooth
function with compact support.
We say that a distribution θ(k) depending of an integer k is periodic

in k if there exists a positive integer D such that for any test function
ϕ on V , and k0, k ∈ Z, ⟨θ(k0 + Dk),ϕ⟩ = ⟨θ(k0),ϕ⟩. Then there
exists (unique) distributions θζ indexed by D-th roots of unity such
that ⟨θ(k),ϕ⟩ =

∑

ζ,ζD=1 ζ
k⟨θζ ,ϕ⟩.

Let (Θ(k))k≥1 be a sequence of distributions. We say that Θ(k)
admits an asymptotic expansion (with periodic coefficients) if there
exists n0 ∈ Z and a sequence of distributions θn(k), n ≥ 0, depending
periodically of k, such that for any test function ϕ and any non negative
integer N , we have

⟨Θ(k),ϕ⟩ = kn0

N
∑

n=0

1

kn
⟨θn(k),ϕ⟩+ o(kn0−N).

We write

Θ(k) ≡ kn0

∞
∑

n=0

1

kn
θn(k).

The distributions θn(k) are uniquely determined.
Given a sequence θn(k) of periodic distributions, and n0 ∈ Z, we

write formally M(ξ, k) for the series of distributions on V defined by

⟨M(ξ, k),ϕ⟩ = kn0

∞
∑

n=0

1

kn

∫

V

θn(k)(ξ)ϕ(ξ)dξ.

We can multiply M(ξ, k) by quasi-polynomial functions q(k) of k and
smooth functions h(ξ) of ξ and obtain the formal series q(k)h(ξ)M(ξ, k)
of the same form with n0 changed to n0 + degree(q).
Let E = V ⊕ R, and we consider the lattice Λ̃ = Λ ⊕ Z in E.

An element of Λ̃ is written as (λ, k) with λ ∈ Λ and k ∈ Z. We
consider quasi-polynomial functions q(λ, k) on Λ̃. As before, this space



4 PAUL-EMILE PARADAN AND MICHÈLE VERGNE

is graded. We call the degree of a quasi-polynomial function on Λ⊕ Z

the total degree. A quasi-polynomial function q(λ, k) is of total degree
d if it is a linear combination of functions (λ, k) (→ j(k)tλkah(λ) where
j(k) is a periodic function of k, t ∈ T of finite order, a a non negative
integer, and h an homogeneous polynomial on V of degree b, with b
such that a+ b = d.
Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z. We construct

qpol(ξ, k) on V × Z, and depending polynomially on ξ as before. We
choose a sublattice of finite index dΓ in Λ and functions pγ(ξ, k) de-
pending polynomially on ξ ∈ V and quasi-polynomial in k such that
q(λ, k) = pγ(λ, k) if λ ∈ γ + Γ. Then qpol(ξ, k) = 1

dΓ

∑

γ∈Λ/Γ pγ(ξ, k).
We say that qpol(ξ, k) is the polynomial part (relative to Λ) of q. If q
is homogeneous of total degree d, then the function (k, ξ) (→ qpol(kξ, k)
is a linear combination of functions of the form j(k)kds(ξ) where j(k)
is a periodic function of k and s(ξ) a polynomial function of ξ.

Proposition 1.1. Let P be a rational polyhedron in V with non empty
interior. Let q(λ, k) be a quasi-polynomial function on Λ⊕ Z homoge-
neous of total degree d. Let qpol(ξ, k) be its polynomial part. Let k ≥ 1.
The distribution

⟨Θ(P ; q)(k),ϕ⟩ =
∑

λ∈kP

q(λ, k)ϕ(λ/k)

admits an asymptotic expansion when k → ∞ of the form

kdimV kd
∞
∑

n=0

1

kn
⟨θn(k),ϕ⟩.

Furthermore, the term kd⟨θ0(k),ϕ⟩ is given by

kd⟨θ0(k),ϕ⟩ =

∫

P

qpol(kξ, k)ϕ(ξ)dξ

where qpol is the polynomial part (with respect to Λ) of q.

Proof. Let q(λ, k) = j(k)kagλh(λ) be a quasi-polynomial function of
total degree d. Let

⟨Θg
0(P )(k),ϕ⟩ =

∑

λ∈kP∩Λ

gλϕ(λ/k). (1.1)

If Θg
0(P )(k) admits the asymptotic expansion M(ξ, k), then Θ(P ; q)(k)

admits the asymptotic expansion j(k)kah(kξ)M(ξ, k). So it is sufficient
to consider the case where q(λ, k) = gλ and the distribution Θg

0(P )(k).
We now proceed as in [2] for the case g = 1 and sketch the proof.

By decomposing the characteristic function [P ] of the polyhedron P
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in a signed sum of characteristic functions of tangent cones, via the
Brianchon Gram formula, then decomposing furthermore each tangent
cone in a signed sum of cones Ca of the form Σa × Ra with Σa is a
translate of a unimodular cone and Ra a rational space, we are reduced
to study this distribution for the product of the dimension 1 following
situations.
V = R,Λ = Z and one of the following two cases:

• P = R

• P = s+ R≥0 with s a rational number.

For example, if P = [a, b] is an interval in R with rational end points
a, b, we write [P ] = [a,∞] + [−∞, b]− [R].
For P = R, and ζ a root of unity, it is easy to see that

⟨Θζ(k),ϕ⟩ =
∑

µ∈Z

ζµϕ(µ/k)

is equivalent to k
∫

R
ϕ(ξ)dξ if ζ = 1 or is equivalent to 0 if ζ ̸= 1.

We now study the case where P = s+ R≥0. Let

⟨Θζ(k),ϕ⟩ =
∑

µ∈Z,µ−ks≥0

ζµϕ(µ/k)

and let us compute its asymptotic expansion.
For r ∈ R, the fractional part {r} is defined by {r} ∈ [0, 1[, r−{r} ∈

Z. If µ is an integer greater or equal to ks, then µ = ks + {−ks} + u
with u a non negative integer.
We consider first the case where ζ = 1. This case has been treated

for example in [3] (Theorem 9.2.2), and there is an Euler-Maclaurin
formula with remainder which leads to the following asymptotic ex-
pansion.
The function z (→ exz

ez−1 has a simple pole at z = 0. Its Laurent series
at z = 0 is

exz

ez − 1
=

∞
∑

n=−1

Bn+1(x)
zn

(n+ 1)!

where Bn(x) (n ≥ 0) are the Bernoulli polynomials.
If s is rational, and n ≥ 0, the function k (→ Bn({−ks}) is a periodic

function of k with period the denominator of s, and

∑

µ∈Z,µ≥ks

ϕ(
µ

k
) ≡ k(

∫ ∞

s

ϕ(ξ)dξ −
∞
∑

n=1

1

kn

Bn({−ks})

n!
ϕ(n−1)(s)).

This formula is easily proven by Fourier transform. Indeed, for f(ξ) =
eiξz, the series

∑

µ≥ks f(µ/k) is
∑

u≥0 e
iszei{−ks}z/keiuz/k. It is convergent
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if z is in the upper half plane, and the sum is

F (z)(k) = −eisz
ei{−ks}z/k

eiz/k − 1
.

So the Fourier transform of the tempered distribution Θζ=1(k) is the
boundary value of the holomorphic function z (→ F (z)(k) above. We
can compute the asymptotic behavior of F (z)(k) easily when k tends
to ∞, since {−ks} ≤ 1, and z/k becomes small.
Rewriting [P ] as the signed sum of the characteristic functions of the

cones Ca, we see that the distribution Θg
0(P )(k) for g = 1 is equivalent

to

kdimV (
∞
∑

n=0

1

kn
θn(k))

with θ0 independent of k, and given by ⟨θ0,ϕ⟩ =
∫

P ϕ(ξ)dξ.
Now consider the case where ζ ̸= 1. Then

∑

µ∈Z,µ≥ks

ζµϕ(µ/k) =
∑

u≥0

ζks+{−ks}ζuϕ(s+ {−ks}/k + u/k).

The function k (→ ζks+{−ks} is a periodic function of k with period
ed if ζe = 1 and ds is an integer. If ζ ̸= 1, the function z (→ exz

ζez−1 is
holomorphic at z = 0. Define the polynomials Bn,ζ(x) via the Taylor
series expansion:

exz

ζez − 1
=

∞
∑

n=0

Bn+1,ζ(x)
zn

(n+ 1)!
.

It is easily seen by Fourier transform that
∑

µ∈Z,µ≥ks ζ
µϕ(µ/k) is equiv-

alent to

−kζks+{−ks}
∞
∑

n=1

1

kn

Bn,ζ({−ks})

n!
ϕ(n−1)(s).

In particular, Θζ(k) admits an asymptotic expansion in non negative
powers of 1/k and each coefficient of this asymptotic expansion is a
periodic distribution supported at s.
Rewriting [P ] in terms of the signed cones Ca, we see that indeed if

g ∈ T is not 1, one of the corresponding ζ in the reduction to a product
of one dimensional cones is not 1, and so

Θg
0(P )(k) ≡ kdimV−1(

∞
∑

n=0

1

kn
θn(k)).

So we obtain our proposition.
!
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Consider now P a rational polyhedron, with possibly empty interior.
Let CP be the cone of base P in E = V ⊕ R,

CP := {(tξ, t), t ≥ 0, ξ ∈ P}.

Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z. We consider
again

⟨Θ(P ; q)(k),ϕ⟩ =
∑

λ∈kP∩Λ

q(λ, k)ϕ(λ/k).

Consider the vector space EP generated by the cone CP in E. It is
clear that Θ(P ; q) depends only of the restriction r of q to EP ∩(Λ⊕Z).
This is a quasi-polynomial function on EP with respect to the lattice
EP ∩ (Λ ⊕ Z). We assume that the quasi-polynomial function r is
homogeneous of degree d0. This degree might be smaller that the total
degree of q. Consider the affine space RP generated by P in V . Let
EZ

P = EP ∩ (V ⊕ Z). If ξ ∈ RP , k ∈ Z, then (kξ, k) ∈ EZ
P . We will see

shortly (Definition 1.3) that we can define a function (ξ, k) (→ rpol(ξ, k)
for (ξ, k) ∈ EZ

P , and that the function (ξ, k) (→ rpol(kξ, k) on RP × Z

is a linear combination of functions of the form kd0j(k)s(ξ) where j(k)
is a periodic function of k and s(ξ) a polynomial function of ξ, for ξ
varying on the affine space RP .
We now can state the general formula.

Proposition 1.2. Let P be a rational polyhedron in V . Let q(λ, k)
be a quasi-polynomial function on Λ ⊕ Z. Let r be its restriction to
EP ∩ (Λ ⊕ Z) and rpol the ”polynomial part” of r on EP ∩ (V ⊕ Z).
Assume that the quasi-polynomial function r is homogeneous of degree
d0. Let k ≥ 1. The distribution

⟨Θ(P ; q)(k),ϕ⟩ =
∑

λ∈kP

q(λ, k)ϕ(λ/k)

admits an asymptotic expansion when k → ∞ of the form

kdimPkd0

∞
∑

n=0

1

kn
⟨θn(k),ϕ⟩.

Furthermore, the term kd0⟨θ0(k),ϕ⟩ is given by

kd0⟨θ0(k),ϕ⟩ =

∫

P

rpol(kξ, k)ϕ(ξ)dξ.

Proof. We will reduce the proof of this proposition to the case treated
before of a polyhedron with interior. Let lin(P ) be the linear space
parallel to RP , and Λ0 := Λ ∩ lin(P ). If RP contains a point β ∈ Λ,
then EP is isomorphic to lin(P )⊕R with lattice Λ0⊕Z. Otherwise, we
will have to dilate RP . More precisely, let IP = {k ∈ Z, kRP ∩Λ ̸= ∅}.



8 PAUL-EMILE PARADAN AND MICHÈLE VERGNE

This is an ideal in Z. Indeed if k1 ∈ IP , k2 ∈ IP , α1,α2 ∈ RP are such
that k1α1 ∈ Λ, k2α2 ∈ Λ, then α1,2 =

1
n1k1+n2k2

(n1k1α1 + n2k2α2) is in
RP , and (n1k1 + n2k2)(α1,2) ∈ Λ. Thus there exists a smallest k0 > 0
generating the ideal IP . We see that our distribution Θ(P ; p)(k) is
identically equal to 0 if k is not in IP . Let δIP (k) be the function of k
with

δIP (k) =

{

0 if k /∈ IP ,

1 if k = uk0 ∈ IP .

This is a periodic function of k of period k0. We choose α ∈ RP such
that k0α ∈ Λ. We identify EP to lin(P ) ⊕ R by the map Tα(ξ0, t) =
(ξ0+ tk0α, tk0). In this identification, the lattice (Λ⊕Z)∩EP becomes
the lattice Λ0 ⊕ Z. Consider P0 = k0(P − α), a polyhedron with
interior in lin(P ). Let qα(γ, u) = r(γ + uk0α, uk0). This is a quasi-
polynomial function on Λ0⊕Z. Its total degree is d0. We have defined
its polynomial part qαpol(ξ, u) for ξ ∈ lin(P ), u ∈ Z.

Definition 1.3. Let (ξ, k) ∈ EZ
P . Define:

rpol(ξ, k) =

{

0 if k /∈ IP ,

qαpol(ξ − uk0α, u) if k = uk0 ∈ IP .

The function rpol(ξ, k) does not depend of the choice of α. Indeed,
if α, β ∈ RP are such that k0α, k0β ∈ Λ, then qβ(γ, u) = qα(γ +
uk0(β − α), u). Then we see that qβpol(ξ, u) = qαpol(ξ + uk0(β − α), u).
Furthermore, the function (k, ξ) (→ rpol(kξ, k) is of the desired form, a
linear combination of functions δIP (k)j(k)k

d0s(ξ) with s(ξ) polynomial
functions on RP .
If ϕ is a test function on V , we define the test function ϕ0 on lin(P )

by ϕ0(ξ0) = ϕ( ξ0k0 + α). We see that

⟨Θ(P ; q)(uk0),ϕ⟩ = ⟨Θ(P0; q
α)(u),ϕ0⟩. (1.2)

Thus we can apply Proposition 1.1. We obtain

⟨Θ(P ; q)(uk0),ϕ⟩ ≡ udimPud0

∞
∑

n=0

1

un
⟨ωn(u),ϕ0⟩.

We have

ud0⟨ω0(u),ϕ0⟩ =

∫

P0

qαpol(uξ0, u)ϕ0(ξ0)dξ0 =

∫

P0

qαpol(uξ0, u)ϕ(
ξ0
k0

+ α)
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When ξ0 runs in P0 = k0(P − α), ξ = ξ0
k0

+ α runs over P . Changing
variables, we obtain

ud0⟨ω0(u),ϕ0⟩ = kd0

∫

P

rpol(kξ, k)ϕ(ξ)dξ.

Thus we obtain our proposition. !

Let P be a rational polyhedron in V and q a quasi-polynomial func-
tion on Λ ⊕ Z. We do not assume that P has interior in V . We
denote by [CP ] the characteristic function of CP . Then the function
q(λ, k)[CP ](λ, k) is zero if (λ, k) is not in CP or equal to q(λ, k) if (λ, k)
is in CP . We denote it by q[CP ]. The space of functions on Λ ⊕ Z we
will study is the following space.

Definition 1.4. We define the space S(Λ) to be the space of functions
on Λ ⊕ Z linearly generated by the functions q[CP ] where P runs over
rational polyhedrons in V and q over quasi-polynomial functions on
Λ⊕ Z.

The representation of m as a sum of functions q[CP ] is not unique.
For example, consider V = R, P = R, P+ := R≥0, P− := R≤0, P0 :=
{0}, then [CP ] = [CP+

] + [CP
−

]− [CP0
].

Example 1.5. An important example of functions m ∈ S(Λ) is the
following. Assume that we have a closed cone C in V ⊕ R, and a
covering C = ∪αCα by closed cones. Let m be a function on C∩(Λ⊕Z),
and assume that the restriction of m to Cα ∩ (Λ ⊕ Z) is given by a
quasipolynomial function qα. Then, using exclusion-inclusion formulae,
we see that m ∈ S(Λ).

Definition 1.6. If m(λ, k) belongs to S(Λ), and g ∈ T is an element
of finite order, then define

mg(λ, k) = gλm(λ, k).

The function mg belongs to S(Λ).
If m ∈ S(Λ), and k ≥ 1, we denote by Θ(m)(k) the distribution on

V defined by

⟨Θ(m)(k),ϕ⟩ =
∑

λ∈Λ

m(λ, k)ϕ(λ/k),

if ϕ is a test function on V . The following proposition follows immedi-
ately from Proposition 1.2.

Proposition 1.7. If m(λ, k) ∈ S(Λ), the distribution Θ(m)(k) admits
an asymptotic expansion A(m)(ξ, k).
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The function m(λ, k) can be non zero, while A(m)(ξ, k) is zero. For
example let V = R, P = R and m(λ, k) = (−1)λ. Then Θ(m)(k) is the
distribution on R given by T(k) =

∑∞
λ=−∞(−1)λδλ/k, k ≥ 1 and this is

equivalent to 0. However, here is an unicity theorem.

Theorem 1.8. Assume that m ∈ S(Λ) is such that A(mg) = 0 for all
g ∈ T of finite order, then m = 0.

Proof. We start by the case of a function m = q[CP ] associated to a
single polyhedron P and a quasi-polynomial function q. Assume first
that P is with non empty interior P 0. If q is not identically 0, we write
q(λ, k) =

∑

g∈T g−λpg(λ, k) where pg(λ, k) are polynomials in λ. If d
is the total degree of q, then all the polynomials pg(λ, k) are of degree
less or equal than d. We choose t ∈ T such that pt(λ, k) is of degree
d. If we consider the quasi-polynomial qt(λ, k), then its polynomial
part is pt(λ, k) and the homogeneous component ptopt (λ, k) of degree
d is not zero. We write ptopt (ξ, k) =

∑

ζ,a ζ
kkapζ,a(ξ) where pζ,a(ξ) is

a polynomial in ξ homogeneous of degree d − a. Testing against a
test function ϕ and computing the term in kd+dimV of the asymptotic
expansion by Proposition 1.1, we see that

∑

ζ,a ζ
kkd

∫

P pζ,a(ξ)ϕ(ξ)dξ =
0. This is true for any test function ϕ. So, for any ζ , we obtain
∑

a pζ,a(ξ) = 0. Each of the pζ,a being homogeneous of degree d − a,
we see that pζ,a = 0 for any a, ζ . Thus ptopt = 0, a contradiction. So
we obtain that q = 0, and m = q[CP ] = 0. Remark that to obtain this
conclusion, we may use only test functions ϕ with support contained
in the interior P 0 of P .
Consider now a general polyhedron P and the vector space lin(P ).

Let us prove thatm(λ, k) = q(λ, k)[CP ](λ, k) is identically 0 if A(mg) =
0 for any g ∈ T of finite order. Using the notations of the proof of
Proposition 1.2, we see that m(λ, k) = 0, if k is not of the form uk0.
Furthermore, if qα(γ, u) = q(γ+uk0α, uk0), it is sufficient to prove that
qα = 0. Let P0 = k0(P −α), a polyhedron with interior in V0. Consider
m0 = qα[CP0

]. We consider T as the character group of Λ, so T surjects
on T0. Let g ∈ T of finite order and such that gk0α = 1, and let g0 be
the restriction of g to Λ0. Using Equation 1.1, we then see that

⟨Θ(mg)(uk0),ϕ⟩ = ⟨Θ(mg0
0 )(u),ϕ0⟩.

Any g0 ∈ T0 of finite order is the restriction to Λ0 of an element
g ∈ T of finite order and such that gk0α = 1. So we conclude that the
asymptotic expansion, when u tends to ∞, of Θ(mg0

0 )(u) is equal to
0 for any g0 ∈ T0 of finite order. Remark again that we need only to
know that ⟨Θ(mg)(k),ϕ⟩ ≡ 0 for test functions ϕ such that the support
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S of ϕ is contained in a very small neighborhood of compact subsets
of P contained in the relative interior of P 0.
For any integer ℓ, denote by Sℓ(Λ) the subspace of functions m ∈

S(Λ) generated by the functions q[CP ] with dimP ≤ ℓ.
When ℓ = 0, our polyhedrons are a finite number of rational points

f ∈ V , the functionm(λ, k) is supported on the union of lines (udff, udf)
if df is the smallest integer such that dff is in Λ. Choose a test func-
tion ϕ with support near f . Then u (→ ⟨Θ(m)(dfu),ϕ⟩ is identical
to its asymptotic expansion m(udff, udf)ϕ(f). Clearly we obtain that
m = 0.
If m ∈ Sℓ(Λ) by inclusion-exclusion, we can write

m =
∑

P ;dim(P )=ℓ

qP [CP ] +
∑

H,dimH<ℓ

qH [CH ]

and we can assume that the intersections of a polyhedron P occurring
in the first sum, with any polyhedron P ′ occurring in the decomposition
of m and different from P is of dimension strictly less than ℓ. Consider
P in the first sum, so dim(P ) = ℓ. We can thus choose test functions
ϕ with support in small neighborhoods of K, with K a compact subset
contained in the relative interior of P . Then

⟨Θ(mg)(k),ϕ⟩ = ⟨Θ(qgP [CP ])(k),ϕ⟩.

The preceding argument shows that qP [CP ] = 0. So m ∈ Sℓ−1(Λ). By
induction m = 0. !

2. Composition of piecewise quasi-polynomial functions

Let V0, V1 be vector spaces with lattice Λ0,Λ1.
Let C0,1 be a closed polyhedral rational cone in V0 ⊕ V1 (containing

the origin). Thus for any µ ∈ Λ1, the set of λ ∈ V0 such that (λ, µ) ∈
C0,1 is a rational polyhedron P (µ) in V0. Let P be a polyhedron in
V . We assume that for any µ ∈ Λ1, P ∩ P (µ) is compact. Thus,
for m = qP [CP ] ∈ S(Λ), and c(λ, µ) a quasi-polynomial function on
Λ0 ⊕ Λ1, we can compute

mc(µ, k) =
∑

(λ,µ)∈C0,1

m(λ, k)c(λ, µ).

Proposition 2.1. The function mc belongs to S(Λ1).

Before establishing this result, let us give an example, which occur
for example in the problem of computing the multiplicity of a repre-
sentation χλ ⊗ χλ of SU(2) restricted to the maximal torus.
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Example 2.2. Let V0 = V1 = R, and Λ0 = Λ1 = Z. Let P := [0, 2],
and let

q(λ, k) =

{

1
2(1− (−1)λ) if 0 ≤ λ ≤ 2k

0 otherwise.

Let
C0,1 = {(x, y) ∈ R

2; x ≥ 0,−x ≤ y ≤ x}

and

c(λ, µ) =
1

2
(1− (−1)λ−µ).

Let µ ≥ 0. Then

mc(µ, k) =
1

4

∑

0≤λ≤2k,λ≥µ

(1−(−1)λ)(1−(−1)λ−µ) = (1 + (−1)µ) (k/2− µ/4) .

So if P1 = [0, 2], P2 := [−2, 0], P3 := {0}, we obtain

mc = q1[CP1
] + q2[CP2

] + q3[CP3
]

with
⎧

⎪

⎨

⎪

⎩

q1(µ, k) = (1 + (−1)µ) (k/2− µ/4) ,

q2(µ, k) = (1 + (−1)µ) (k/2 + µ/4) ,

q3(µ, k) = −k.

We now start the proof of Proposition 2.1.

Proof. Write c(λ, µ) as a sum of products of quasi-polynomial functions
qj(λ), fj(µ), and qP (λ, k) a sum of products of quasi-polynomial func-
tions mℓ(k), hℓ(λ). Then we see that it is thus sufficient to prove that,
for q(λ) a quasi-polynomial function of λ, the function

S(q)(µ, k) =
∑

λ∈kP∩P (µ)

q(λ) (2.1)

belongs to S(Λ1). For this, let us recall some results on families of
polytopes p(b) ⊂ E defined by linear inequations. See for example [1],
or [8].
Let E be a vector space, and ωi, i = 1, . . . , N be a sequence of linear

forms on E. Let b = (b1, b2, . . . , bN ) be an element of RN . Consider
the polyhedron p(b) defined by the inequations

p(b) = {v ∈ E; ⟨ωi, v⟩ ≤ bi, i = 1, . . . , N}.

We assume E equipped with a lattice L, and inequations ωi defined
by elements of L∗. Then if the parameters bi are in ZN , the polytopes
p(b) are rational convex polytopes.
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Assume that there exists b such that p(b) is compact (non empty).
Then p(b) is compact (or empty) for any b ∈ RN . Furthermore, there
exists a closed cone C in RN such that p(b) is non empty if and only
if b ∈ C. There is a decomposition C = ∪αCα of C in closed polyhedral
cones with non empty interiors, where the polytopes p(b), for b ∈ Cα,
does not change of shape. More precisely:
• When b varies in the interior of Cα, the polytope p(b) remains with

the same number of vertices {s1(b), s2(b), . . . , sL(b)}.
• for each 1 ≤ i ≤ L, there exists a cone Ci in E, such that the

tangent cone to the polytope p(b) at the vertex si(b) is the affine cone
si(b) + Ci.
• the map b → si(b) depends of the parameter b, via linear maps

RN → E with rational coefficients.
Furthermore -as proven for example in [1]- the Brianchon-Gram de-

composition of p(b) is ”continuous” in b when b varies on Cα, in a
sense discussed in [1].
Before continuing, let us give a very simple example, let b1, b2, b3

be 3 real parameters and consider p(b1, b2, b3) = {x ∈ R, x ≤ b1,−x ≤
b2,−x ≤ b3}. So we are studying the intersection of the interval [−b2, b1]
with the half line [−b3,∞]. Then for p(b) to be non empty, we need
that b ∈ C, with

C = {b; b1 + b2 ≥ 0, b1 + b3 ≥ 0}.

Consider C = C1 ∪ C2, with

C1 = {b ∈ C; b2 − b3 ≥ 0},

C2 = {b ∈ C; b3 − b2 ≥ 0}.

On C1 the vertices of p(b) are [−b3, b1], while on C2 the vertices of
p(b) are [−b2, b1].
The Brianchon-Gram decomposition of p(b) for b in the interior of

C1 is [−b3,∞] + [−∞, b1]−R. If b ∈ C1 tends to the point (b1, b2,−b1)
in the boundary of C, we see the Brianchon-Gram decomposition tends
to that [b1,∞] + [−∞, b1]− R, which is indeed the polytope {b1}.
Let q(γ) be a quasi-polynomial function of γ ∈ L. Then, when b

varies in Cα ∩ ZN , the function

S(q)(b) =
∑

γ∈p(b)∩L

q(γ)

is given by a quasi-polynomial function of b. This is proven in [8], The-
orem 3.8. In this theorem, we sum an exponential polynomial function
q(γ) on the lattice points of p(b) and obtain an exponential polyno-
mial function of the parameter b. However, the explicit formula shows
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that if we sum up a quasi-polynomial function of γ, then we obtain a
quasi-polynomial function of b ∈ ZN . Another proof follows from [1]
(Theorem 54) and the continuity of Brianchon-Gram decomposition.
In [1], only the summation of polynomial functions is studied, via a
Brianchon-Gram decomposition, but the same proof gives the result
for quasi-polynomial functions (it depends only of the fact that the
vertices vary via rational linear functions of b). The relations between
partition polytopes PΦ(ξ) (setting used in [8], [1]) and families of poly-
topes p(b) is standard, and is explained for example in the introduction
of [1].
Consider now our situation with E = V equipped with the lattice Λ.

The polytope kP ⊂ V is given by a sequence of inequalities ωi(ξ) ≤ kai,
i = 1, . . . , I, where we can assume ωi ∈ Λ∗ and ai ∈ Z by eventually
multiplying by a large integer the inequality. The polytope P (µ) is
given by a sequence of inequalities ωj(ξ) ≤ νj(µ), j = 1, . . . , J where
νj depends linearly on µ. Similarly we can assume νj(µ) ∈ Z. Let

(µ, k) (→ b(µ, k) = [ka1, . . . , kaI , ν1(µ), . . . , νJ(µ)]

a linear map from Λ1 ⊕ Z to ZN . Our polytope kP ∩ P (µ) is the
polytope p(b(k, µ)) and

S(q)(µ, k) =
∑

λ∈p(b(k,µ))∩Λ

q(λ) = S(q)(b(µ, k)).

Consider one of the cones Cα. Then b(µ, k) ∈ Cα, if and only if
(µ, k) belongs to a rational polyhedral cone Cα in V1 ⊕ R. If Q is a
quasi-polynomial function of b, then Q(b(µ, k)) is a quasi-polynomial
function of (µ, k). Thus on each of the cones Cα, S(q)(µ, k) is given by
a quasi-polynomial function of (µ, k). From Example 1.5, we conclude
that S(q) belongs to S(Λ1). !

3. Piecewise quasi-polynomial functions on the Weyl
chamber

For applications, we have also to consider the following situation.
Let G be a compact Lie group. Let T be a maximal torus of G, t its

Lie algebra, W be the Weyl group. Let Λ ⊂ t∗ be the weight lattice
of T . We choose a system ∆+ ⊂ t∗ of positive roots, and let ρ ∈ t∗

be the corresponding element. We consider the positive Weyl chamber
t∗≥0 with interior t∗>0.
We consider now S≥0(Λ) the space of functions generated by the

functions q[CP ] with polyhedrons P contained in t∗≥0. This is a subspace
of S(Λ). If t ∈ T is an element of finite order, the function mt(λ, k) =
tλm(λ, k) is again in S≥0(Λ).
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If m ∈ S≥0(Λ), we define the following anti invariant distribution
with value on a test function ϕ given by

⟨Θa(m)(k),ϕ⟩ =
1

|W |

∑

λ

m(λ, k)
∑

w∈W

ϵ(w)ϕ(w(λ+ ρ)/k)

Proposition 3.1. If for every t ∈ T of finite order, we have Θa(mt) ≡
0, then m = 0.

Proof. Consider ϕ a test function supported in the interior of the Weyl
chamber. Thus, for λ ≥ 0, ϕ(w(λ+ ρ)/k) is not zero only if w = 1. So

⟨Θa(m)(k),ϕ⟩ =
1

|W |

∑

λ≥0

m(λ, k)ϕ((λ+ ρ)/k)

while
⟨Θ(k),ϕ⟩ =

∑

λ≥0

m(λ, k)ϕ(λ/k).

Let (∂ρϕ)(ξ) =
d
dϵ ‘ϕ(ξ+ ϵρ)|ϵ=0 and consider the series of differential

operators with constant coefficients e∂ρ/k = 1 + 1
k∂ρ + · · · . We then

see that, if ⟨A(ξ, k),ϕ⟩ is the asymptotic expansion of ⟨Θ(k),ϕ⟩, the
asymptotic expansion of ⟨Θa(k),ϕ⟩ is ⟨A(ξ, k), e∂ρ/kϕ⟩. Proceeding as
in the proof of Theorem 1.8, we see that if ⟨Θa(mt)(k),ϕ⟩ ≡ 0 for all
t ∈ T of finite order, then m(λ, k) is identically 0 when λ is on the
interior of the Weyl chamber.
Consider all faces (closed) σ of the closed Weyl chamber. Define

Sℓ,≥0 ⊂ S(Λ) to be the space of m =
∑

σ,dim(σ)≤ℓ mσ, where mσ ∈
S≥0(Λ) is such that mσ(λ, k) = 0 if λ is not in σ. Let us prove by
induction on ℓ that if m ∈ Sℓ,≥0 and Θt

a(m
t) ≡ 0, for all t ∈ T of finite

order, then m = 0.
If ℓ = 0, then m(λ, k) = 0 except if λ = 0, and our distribution is

m(0, k)
∑

w

ϵ(w)ϕ(wρ/k).

Now, take for example ϕ(ξ) =
∏

α>0(ξ, Hα)χ(ξ) where χ is invariant
with small compact support and identically equal to 1 near 0. Then
⟨Θa(m),ϕ⟩ for k large is equal to c 1

kN m(0, k), where N is the number
of positive roots, and c a non zero constant. So we conclude that
m(0, k) = 0.
Now consider m =

∑

dimσ=ℓ mσ +
∑

dim f<ℓ mf . Choose mσ in the
first sum. Let σ0 be the relative interior of σ. Let ∆0 be the set of roots
α, such that ⟨Hα, σ⟩ = 0. Then t∗ = t∗1⊕ t∗0, where t

∗
0 =

∑

α∈∆0 Rα and
t∗1 = Rσ. We write ξ = ξ0 + ξ1 for ξ ∈ t∗, with ξ0 ∈ t∗0, ξ1 ∈ t∗1. Then
ρ = ρ0+ ρ1 with ρ1 ∈ t∗1 and ρ0 =

1
2

∑

α∈∆+
0
α. Let W0 be the subgroup
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of the Weyl group generated by the reflections sα with α ∈ ∆0. It
leaves stable σ.
Consider ϕ a test function of the form ϕ0(ξ0)ϕ1(ξ1) with ϕ0(ξ0) =

χ0(ξ0)
∏

α∈∆+
0
⟨ξ0, Hα⟩ with χ0(ξ0) a function on t∗0 with small support

near 0 and identically 1 near 0, while ϕ1(ξ1) is supported on a compact
subset contained in σ0.
For k large,

⟨Θt
a,ϕ⟩ =

1

|W |
mσ(λ, k)

∑

w∈W0

φ(w(λ+ ρ)/k).

So

⟨Θt
a,ϕ⟩ = c0

1

kN0

∑

λ∈σ

mσ(λ, k)ϕ1((λ+ ρ1)/k).

As in the preceding case, this implies that mσ(λ, k) = 0 for λ ∈ σ0.
Doing it successively for all σ entering in the first sum, we conclude
that m ∈ S≥0,ℓ−1(Λ). By induction, we conclude that m = 0. !
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