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Abstract

In this paper, we study the time evolution of a finite number of homogeneous rigid disks within a viscous

homogeneous incompressible fluid in the whole domain R2. The motion of the fluid is governed by Navier-Stokes

equations, whereas the movement of each rigid body is described by the standard conservation laws of linear

and angular momentum. The motion of the rigid bodies inside the fluid makes the fluid domain time dependent

and unknown a priori. At first, we prove the local existence and uniqueness of strong solutions of the considered

problem and then by careful analysis of how elliptic estimates for the Stokes operator depend on the geometry

of the fluid domain, we extend these solutions up to collision. Finally, we prove contact between rigid bodies

could not occur for almost arbitrary configurations.

Keywords. Navier–Stokes equations, rigid bodies, strong solutions, contact problem.

1 Introduction

We consider a finite number of homogeneous rigid bodies – each being represented by a closed disk

Bi(t) ⊂ R2– moving in a viscous homogeneous incompressible fluid which occupies a domain ΩF (t) at time

t, where ΩF (t) = R2\
k⋃

i=1
Bi(t), with k ∈ N∗ denoting the number of rigid bodies.

We suppose that the fluid is of viscosity ν > 0, pressure p, velocity field u and for simplicity, of density

one. The motion of the fluid is governed by the Navier-Stokes equations for incompressible fluids:

∂tu− ν∆u+ (u · ∇)u+∇p = f, x ∈ ΩF (t), t ∈ (0, T ), (1.1)

∇ · u = 0, x ∈ ΩF (t), t ∈ (0, T ), (1.2)

where f ∈ L2((0, T )× R2) denotes an external body force.
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For each rigid body, we define the density ρi, the center of mass hi(t), the angular velocity ωi(t) and

the inertia matrix Ji related to the center of mass of the i-th body by

ρi = mi

|Bi(0)| , hi(t) = 1
|Bi(0)|

∫
Bi(t)

x dx, Ji(t) =
∫

Bi(t)
ρi|x− hi(t)|2dx =

∫
Bi(0)

ρi|y|2dy,

where mi denotes the mass of the i-th body.

The motion of the i-th body is governed by the balance equations for linear and angular momentum

(Newton’s Laws):

mih
′′

i (t) = −
∫

∂Bi(t)
σνidΓi + ρi

∫
Bi(t)

f(t)dx, t ∈ (0, T ), (1.3)

Jiω
′

i(t) = −
∫

∂Bi(t)
(x− hi(t))⊥ · σνidΓi + ρi

∫
Bi(t)

(x− hi(t))⊥ · f(t)dx, t ∈ (0, T ). (1.4)

In the above equations, the matrix σ denotes the Cauchy stress tensor in the fluid and is given by

σ(u, p) = −pI + 2νD[u],

where I is the identity matrix and D[u] denotes the rate of deformation tensor defined as follows

D[u] = 1
2(∇u+∇uT ).

We denote by (x1, x2)⊥ = (−x2, x1) the orthogonal vector of (x1, x2) and we use the notation ∂Bi(t) to

denote the boundary of the i-th body at time t. The symbol νi(x, t) stands for the unit normal vector

directed toward the interior of the i-th body. For simplicity, ΩF (0) and Bi(0) will be denoted later on by

ΩF and Bi respectively.

We impose the no-slip boundary conditions at the fluid/rigid body interfaces

u(x, t) = h
′

i(t) + ωi(t)(x− hi(t))⊥, x ∈ ∂Bi(t), t ∈ [0, T ], i ∈ {1, . . . , k}. (1.5)

To complete the system, we impose initial conditions at t = 0 :

u|ΩF = u0, hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , ∀i ∈ {1, . . . , k}. (1.6)

Throughout this paper, we assume that there is no contact initially between the rigid bodies; that is

γ = min
1≤i,j≤k

{d(Bi(0), Bj(0)) : i 6= j} > 0. (1.7)

The problem of existence of weak solutions of problem (1.1)-(1.6) has been the subject of intensive

studies of many authors. We mention here Desjardins and Esteban [4] and [5]; Conca, San Martin, and

Tucsnak [2]; Gunzburger, Lee, and Seregin [13]; Hoffmann and Starovoitov [16]; San Martin, Starovoitov,

and Tucsnak [21]; Serre [22], Judakov [18], and Silvestre [23]. Most of the above references deal with the

case of a bounded domain in R2 or R3 and all of them - except [4] and [5] - discuss the case of a single
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rigid body of arbitrary shape. Recently, Glass and Sueur investigated the problem of uniqueness of weak

solutions in dimension 2 in [11] as long as no collision occurs. In dimension 3, the question of existence of

global weak solutions was answered by Feireisl in [7]. However, the uniqueness of such solutions is still an

open question even considering pre-collisional times. After contact, it is likely uniqueness does not hold

as we miss some entropy condition describing the post-collisional dynamics.

As far as we know, the problem of existence of strong solutions for problem (1.1)-(1.6) in the case of

single moving rigid body of arbitrary shape in a cavity is investigated in several studies. A local-in-time

existence result of strong solutions in this case was proved in Grandmont and Maday [12], provided that

the inertia of the rigid body is large enough with respect to the inertia of the fluid. Further development

in this domain is the work of Takahashi in [24]. The author proves the existence and uniqueness of global

strong solution without taking in consideration the assumption in [12]. The first no collision result for

strong solutions was provided by T. Hesla [14] and M. Hillairet [15]. In [15], the author shows that any

strong solution is global under the absence of external forces in the case of a moving disk in the half space

R2
+. Thereafter, it has been studied the roughness-induced effect of the rigid body and the boundary of

the domain on the collision process [10].

However, much less is known in the case of the fluid-rigid-body system filling the whole space. One of

the available results in this case is due Takahashi and Tucsnak [25], where the authors prove the existence

and uniqueness of strong solutions for an infinite cylinder in dimension 2. A similar result has been proved

in Silvestre and Galdi [8] for a rigid body having an arbitrary form. Lately, Cumsile and Takahashi

improved the result in [25]. They establish the existence and uniqueness of strong solution globally in

dimension 2 and also in dimension 3 if the data are small enough [3]. A one-dimensional version of the

problem of several rigid bodies is studied in Vázquez and Zuazua [26] where the asymptotic behavior of

solutions is also investigated. Another approach of studying this problem is developed in [9] where the

authors prove the existence of a unique, local, strong solution in the Lp setting.

In this paper, we aim to generalize the local existence result of Takahashi in [24] and that of Cumsille

and Takahashi in [3] to the case of several rigid bodies. In this respect, we establish the following theorem:

Theorem 1.1 Suppose that f ∈ L2(0, T ; L2(R2)), γ > 0, h0
i ∈ R2, h1

i ∈ R2, ω0
i ∈ R, u0 ∈ H1(R2), and

that
∇ · u0 = 0, in ΩF,

u0(x) = h1
i + ω0

i (x− h0
i )⊥, x ∈ ∂Bi, ∀i ∈ {1, . . . , k}.

Then there exists T0 > 0 depending on ‖u0‖H1(R2) and γ such that problem (1.1)-(1.6) admits a unique

strong solution

(u, p, (hi, ωi)i∈{1,...,k}) ∈ U(0, T1; ΩF (t))× L2(0, T1; H1(ΩF (t)))×
(
H2(0, T1;R2)×H1(0, T1;R)

)k
,
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where

U(0, T1; ΩF (t)) = L2(0, T1; H2(ΩF (t))) ∩ C([0, T1],H1(ΩF (t))) ∩H1(0, T1; L2(ΩF (t)))

on [0, T1] such that T1 < T0.

Moreover, one of the following alternatives holds true:

1. T0 = +∞,

2. lim sup
t→T0

‖u(t)‖H1(R2) + 1
min
i 6=j

d(Bi(t), Bj(t)) = +∞.

Then we adapt the method of Gérard-Varet and Hillairet in [10] to our case and we arrive to the following

result:

Theorem 1.2 Assume that the hypotheses of Theorem 1.1 hold true and that

the fluid domain is connected at any time. (H1)

Then problem (1.1)-(1.6) admits a unique global strong solution.

First, we prove that the H1 norm of the velocity field u does not explode in finite time as long as the
rigid bodies are not in contact. Then we show that collision for almost arbitrary configurations could not
take place in finite time. The proof is based on a combined fluid-body weak formulation of the equation
of motion:∫ t

0

∫
R2

(
ρu ·∂tv+ρu⊗u : D[v]−2νD[u] : D[v]+ρf ·v

)
dxds+

∫
R2
ρ0u0 ·v(0)dx =

(∫
R2
ρu ·vdx

)
(t), ∀v ∈ H, (1.8)

where

H = {v ∈ H1((0, T )× R2) : ∇ · v = 0 in ΩF (t), D[v] = 0 onBi(t), 1 ≤ i ≤ k},

with u and ρ denote respectively the global velocity and density.

We act by contradiction and we assume that collision can occur in finite time. The idea is to construct a

divergence free vector field v and use it as a test function in (1.8). The test function v is constructed in two

steps: first we construct it locally on the bridge connecting the bodies close to contact point (see Figure 2) and

then we extend it outside the bridges by a regular vector field. When two disks approach each other, the viscous

term dominates the acceleration term leading to a differential inequality which can be integrated to obtain the no

collision result.

The novelty of our work is that we prove the existence and uniqueness of global strong solutions in the case of

several disks and the full system fills the whole domain R2. The main restriction of the global-in-time existence

result in Theorem 1.2 is that we need the fluid domain to be connected at any time. However, this assumption is

always valid in the case when we have just two moving bodies and that many body contacts are really unlikely if

we start from a sufficiently dilute suspension of bodies.
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The main difficulty to handle the case of more than two rigid bodies is that collision could possibly divide the

fluid domain into several connected components. On such situation, each connecting bridge between the colliding

particles has two connected components inside the fluid domain. Unfortunately, the flux does not vanish on each

of the connected components even if their sum does. This prevents us from extending the vector field v into the

fluid domain outside the bridges by a divergence free vector field.

The plan of this paper is as follows: in Section 2, we write problem (1.1)-(1.6) in cylindrical domain by

introducing a change of variable X and then we prove the existence and uniqueness of local-in-time strong solution

for our problem. The remaining two sections are left to prove that the unique strong solution is global under the

assumption (H1).

2 Local existence for solution

In this section, we introduce the mapping X that enables to transform the free boundary value problem (1.1)-

(1.6) into a problem in cylindrical domain. We follow the same approach used in [3] and [24]. This approach is

characterized by a non-linear, local change of coordinates in a neighborhood of the rigid body. We recall that such

transform X is initially introduced by Inoue and Wakimoto [17].

We fix k functions hi : t 7→ hi(t) such that for i ∈ {1, . . . , k}, we have hi ∈ H2(0, T ;R2). Moreover, from now

on we fix ε such that 0 < ε < γ.

For i ∈ {1, . . . , k}, we define the cut-off function ψi ∈ C∞(R2,R) with compact support contained inB(hi(0), ri+
γ
2 ) and equal 1 in B(hi(0), ri + δ−ε

2 ), where ri denotes the radius of the i-th disk.

Also, we define the functions wi : R2 × [0, T ]→ R by

wi(x1, x2, t) = h′i,2(t)x1 − h′i,1(t)x2, i ∈ {1, . . . , k}. (2.1)

We define the mapping Λ : R2 × [0, T ]→ R2 by

Λ(x1, x2, t) =
k∑
i=1

∇⊥(wiψi). (2.2)

The mapping X is defined as a solution of the following Cauchy problem:
∂X

∂t
(y, t) = Λ(X(y, t), t), t ∈]0, T ],

X(y, 0) = y ∈ R2.

(2.3)

Finally, We define the functions U , P , and F using the transform X as follows:

U(y, t) = JY (X(y, t), t)u(X(y, t), t), P (y, t) = p(X(y, t), t) and F (y, t) = JY (X(y, t), t)f(X(y, t), t), (2.4)

where the diffeomorphism Y (., t) denotes the inverse mapping of X(., t) and JY is the Jacobian matrix of the

diffeomorphism Y (., t).

We state in the following proposition the system satisfied by (U,P, (hi, ωi)i=1,...,k):

Proposition 2.1 Suppose that for all i ∈ {1, . . . , k}, we have hi ∈ H2(0, T ;R2) is such that

Bi(t) ⊂ B(hi(0), ri + δ − ε
2 ), ∀t ∈ [0, T ].
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Then

(u, p, (hi, ωi)i=1,...,k) ∈ U(0, T,ΩF (t))× L2(0, T, Ḣ1(ΩF (t)))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
satisfies problem (1.1)-(1.6) if and only if

(U,P, (hi, ωi)i=1,...,k) ∈ U(0, T,ΩF )× L2(0, T, Ḣ1(ΩF ))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
satisfies the following equations:

∂U

∂t
− ν[LU ] + [MU ] + [NU ] + [GP ] = F, in ΩF×]0,T[, (2.5)

∇ · U = 0, in ΩF×]0,T[, (2.6)

U(y, 0) = u0(y), y ∈ ΩF , (2.7)

and for all i ∈ {1, . . . , k}, we have:

mih
′′
i (t) = −

∫
∂Bi

ΣνidΓi + ρi

∫
∂Bi

F (t)dy, t ∈]0, T [, (2.8)

Jiω
′
i(t) = −

∫
∂Bi

(y − hi(0))⊥ · ΣνidΓi + ρi

∫
∂Bi

(y − hi(0))⊥ · F (t)dy, t ∈]0, T [, (2.9)

U(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, in ∂Bi × [0,T[, (2.10)

hi(0) = h0
i , h

′
i(0) = h1

i , ωi(0) = ω0
i , ∀i ∈ {1, . . . , k}, (2.11)

where Σ(U,P ) is the Cauchy stress tensor field associated to U and P . The operators [LU ], [MU ], [NU ] and [GP ]

that appear in the left hand side of (2.5) are defined as follows:

[LU ]i =
2∑

j,k=1

∂

∂yj
(gjk ∂Ui

∂yk
) + 2

2∑
j,k,`=1

gk`Γij,k
∂Uj
∂y`

+
2∑

j,k,`=1

{
∂

∂yk
(gk`Γij,`) +

2∑
m=1

gk`Γmj,`Γik,m

}
Uj , (2.12)

[MU ]i =
2∑
j=1

∂Yj
∂t

∂Ui
∂yj

+
2∑

j,k=1

{
Γij,k

∂Yk
∂t

+ ∂Yi
∂xk

∂2Xk
∂t∂yj

}
Uj , (2.13)

[NU ]i =
2∑
j=1

Uj
∂Ui
∂yj

+
2∑

j,k=1

Γij,kUjUk, (2.14)

[GP ]i =
2∑
j=1

gij
∂P

∂yj
, (2.15)

where for all i, j, k ∈ {1, 2}, we have denoted

gij =
2∑
k=1

∂Yi
∂xk

∂Yj
∂xk

, (2.16)

Γki,j = 1
2

2∑
`=1

gk`
{
∂gi`
∂yj

+ ∂gj`
∂yi
− ∂gij
∂y`

}
, (2.17)

gij =
2∑
k=1

∂Xk
∂yi

∂Xk
∂yj

. (2.18)
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For a proof of this Proposition, we refer the reader to [17] and [24].

Following the same approach of [24], we get that for T small enough, problem (2.5)-(2.11) admits a unique

strong solution

(U,P, (hi, ωi)i=1,...,k) ∈ U(0, T ; ΩF )× L2(0, T ; H1(ΩF ))×
(
H2(0, T ;R2)×H1(0, T ;R)

)k
.

Theorem 1.1 can be deduced then by using the inverse transform Y . For more details, we refer the reader to [20].

3 Estimating the H1-norm of u(t)

In the previous section, we prove that there exists a time T > 0 such that the problem (1.1)-(1.6) admits a

unique strong solution (u, p, (hi, ωi)i=1,...k) in [0, T ]. Moreover, if we define T0 as the maximal time of existence of

strong solutions, that is

T0 := sup {T ∈ R∗+ : problem (1.1)− (1.6) admits a unique strong solution in [0, T ]} ,

then one of the following alternatives holds true:

1. T0 = +∞,

2. lim sup
t→T0

‖u(t)‖H1(R2) + 1
min
i6=j

d(Bi(t), Bj(t))
= +∞.

In the present section, we aim to prove that the H1 norm of the solution u does not explode in finite time as long

as there is no contact between the rigid bodies. More precisely, we state the following proposition:

Proposition 3.1 If T0 < +∞ and min
i6=j

d(Bi(t), Bj(t)) > ε > 0 on [0, T0], then the mapping

t→ ‖u(t)‖H1(R2)

is bounded on [0, T0) by a constant that depends on ε, γ and the initial data.

The following lemma shows that the mapping t→ ‖u(t)‖L2(R2) is bounded on [0, T0).

Lemma 3.1 Let (u, p, (hi, ωi)i=1,...k) be the strong solution associated to problem (1.1)-(1.6) on [0, T ]. If T0 <∞,

then there exists a positive constant M = M(T0, (ρi, Bi)i=1,...,k), such that

sup
[0,T0)

(
||u(t)||2L2(ΩF (t)) +

k∑
i=1

(|h′i(t)|2 + |ωi(t)|2)
)

+ 2ν
∫ T0

0
||∇u(t)||2[L2(R2)]4dt

≤M
(
||f ||2L2(0,T0;L2(R2)) + ||u0||2L2(ΩF ) +

k∑
i=1

(|h1
i |2 + |ω0

i |2)
)
. (3.1)

Proof. By taking the inner product of equation (1.1) with u, and integrating over ΩF (t), we get that

1
2
d

dt

∫
ΩF (t)

|u(t)|2dx+ 2ν
∫

ΩF (t)
|D[u(t)]|2dx =

k∑
i=1

∫
∂Bi(t)

(
σ(u(t), p(t))u(t)

)
· νidΓi +

∫
ΩF (t)

f(t) · u(t)dx. (3.2)
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Taking now the inner product of (1.3) with h′i(t) and that of (1.4) by ωi(t), and noting the no-slip condition (1.5),

we obtain

mi

2
d

dt
|h′i(t)|2 + Ji

2
d

dt
|ωi(t)|2 = −

∫
Bi(t)

u(t) · σνidΓi

+ ρi

∫
Bi(t)

(h′i(t) + ωi(t)(x− hi(t))⊥) · f(t)dx, ∀i ∈ {1, . . . , k}. (3.3)

Combining (3.2) with the k equations in (3.3) noting that the Cauchy stress tensor field σ is symmetric yields

1
2
d

dt

(∫
ΩF (t)

|u(t)|2dx+
k∑
i=1

(mi|h′i(t)|2 + Ji|ωi(t)|2)

)
+ 2ν

∫
ΩF (t)

|D[u(t)]|2dx

=
∫

ΩF (t)
f(t) · u(t)dx+ ρi

∫
Bi(t)

(h′i(t) + ωi(t)(x− hi(t))⊥) · f(t)dx. (3.4)

We denote by (., .) the inner product in L2(R2) defined by

(φ, ψ) =
∫

ΩF

φ · ψ dy +
k∑
i=1

∫
Bi

ρiφ · ψ dy,

and its associated norm ‖.‖L2(R2). This latter norm is equivalent to the usual norm of L2(R2).

For φ and ψ in H where

H = {φ ∈ L2(R2) : ∇ · φ = 0 in R2, D[φ] = 0 inBi, ∀i ∈ {1, . . . , k}},

we have:

(φ, ψ) =
∫

ΩF

φ · ψ dy +
k∑
i=1

miVφ,i · Vψ,i + Jiωφ,i ωψ,i. (3.5)

By Lemma 4.1 in [25], we have

‖D[u]‖[L2(R2)]4 = ‖∇u‖[L2(R2)]4 ,

Using the above inner product (., .) and combining (3.4) together with the above relation, we get that

1
2
d

dt
‖u(t)‖2L2(R2) + ν

∫
R2
|∇u(t)|2dx = (f(t), u(t)). (3.6)

Thus for almost t in [0, T0), we have

||u(t)||2L2(R2) + 2ν
∫ t

0

∫
R2
|∇u(t)|2dx ≤

∫ t

0
||u(s)||2L2(R2)ds+

∫ T0

0
‖f(s)‖2L2(R2)ds+ ||u0||2L2(R2). (3.7)

Gronwall lemma implies that

||u(t)||2L2(R2) ≤ e
T0
(∫ T0

0
‖f(s)‖2L2(R2)ds+ ||u0||2L2(R2)

)
, a.e on [0, T0). (3.8)

Combining the above inequality with that in (3.7), it follows that

2ν
∫ t

0

∫
R2
|∇u(t)|2dx ≤ (1 + T0e

T0 )
(∫ T0

0
‖f(s)‖2L2(R2)ds+ ||u0||2L2(R2))

)
, a.e on [0, T0). (3.9)

�
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In the rest of the work, we keep the constant M as it is defined in the above Lemma and we define K1 such

that

K1 =
(
||f ||2L2(0,T0;L2(R2) + ||u0||2L2(ΩF ) +

k∑
i=1

(|h1
i |2 + |ω0

i |2)
) 1

2
.

In order to prove Proposition 3.1, it remains to bound the norm of ∇u in [L2(R2)]4. To do this, we follow the

method of Cumsille and Takahashi in [3] and we start with defining some auxiliary functions.

We consider a family of smooth functions {ζi}i=1,...,k ; each of compact support contained in B(hi(0), ri + δ
2 )

and equal 1 on Bi. For a fixed i in {1, . . . , k}, we set ψ̂i(x, t) = ζi(x − hi(t) + hi(0)) and we define the mapping

Λ̂ : R2 × [0, T ]→ R2 by

Λ̂(x1, x2, t) =
k∑
i=1

∇⊥(wiψ̂i). (3.10)

Let X̂ be the solution of the initial value problem
∂X̂

∂t
(y, t) = Λ̂(X̂(y, t), t), t ∈]0, T ],

X̂(y, 0) = y ∈ R2.

(3.11)

Then for y ∈ Bi, we have

X̂(y, t) = y + hi(t)− hi(0).

It is easy to see that

∃C > 0 such that ||Λ̂||W2,∞(ΩF (t)) ≤ C
k∑
i=1

|h′i(t)|.

By the previous lemma, we get

||Λ̂||W2,∞(ΩF (t)) ≤ CM
1
2K1.

Also, we define for (y, t) ∈ R2 × [0, T ] and i ∈ {1, . . . , k}, the mapping:

wi(y, t) = h′i,2(t)y1 − h′i,1(t)y2 + ωi(t)
2 |y − hi(0)|2.

Finally, we define the mapping Λ : R2 × [0, T ]→ R2 by

Λ(x1, x2, t) =
k∑
i=1

∇⊥(wiζi). (3.12)

We note here that

Λ(y, t) = h′i(t) + ωi(t)(y − hi(0))⊥, ∀y ∈ Bi,

and

||Λ(t)||H2(ΩF (t)) ≤ C
k∑
i=1

(|h′i(t)|+ |ωi(t)|), ∀t ∈ [0, T0).

Again by Lemma 3.1, we have

||Λ||H2(ΩF (t)) ≤ CM
1
2K1.

Next, we state the following lemma without proof as its demonstration is similar to that of Lemma 4.3 in [3].
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Lemma 3.2 Let (u, p, (hi, ωi)i=1,...k) be the strong solution associated to problem (1.1)-(1.6). Then for almost all

t ∈ (0, T0), we have

−
∫

ΩF (t)
[∇ · σ(u, p)] · (∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂)dx

= ν
d

dt

∫
ΩF (t)

|D[u]|2dx+
k∑
i=1

(
mi|h

′′
i (t)|2 + Ji|ω

′
i(t)|2 −

∫
Bi(t)

ρif(x, t) · (h
′′
i (t) + ω

′
i(t)(x− hi(t))⊥

)
+ 2ν

∫
ΩF (t)

D[u] : (∇u∇Λ̂)dx− 2ν
∫

ΩF (t)
D[u] : D[(u · ∇)Λ̂])dx. (3.13)

Proposition 3.1 will be deduced from the following proposition.

Proposition 3.2 Let (u, p, (hi, ωi)i=1,...,k) be the strong solution in [0, T1], where T1 < T0 is small enough and

depends on ν, M and the initial data. Then there exists K > 1 such that

sup
t∈[0,T1]

‖∇u(t)‖2[L2(R2)]4 ≤ K
(
‖∇u0‖2[L2(R2)]4 + 1

)
, (3.14)

and ∫ T1

0

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (s))
ds+

k∑
i=1

(∫ T1

0
|h
′′
i (s)|2ds+

∫ T1

0
|ω
′
i(s)|2ds

)
≤ K

(
‖∇u0‖2[L2(R2)]4 + 1

)2
. (3.15)

where the constant K depends on ΩF , Bi, ν, ρi, T0, ‖u0‖L2(ΩF ), |h1
i |, |ω0

i | and ‖f‖L2(0,T0;L2(R2)).

Remark 3.1 As the system is autonomous and dissipative, then for all t ≥ 0 the above proposition is still valid

on any interval [t, t+ T1] ⊂ [0, T0[.

Before giving the proof of Proposition 3.2, let us see how it implies Proposition 3.1.

Proposition 3.2 implies that the mapping t 7→ ‖∇u‖[L2(R2)]4 is bounded on [0, T1] for T1 is small enough. We can

choose T1 such that T0 = NT1, for some N ∈ N∗. This implies that

‖∇u(t)‖2[L2(R2)]4 ≤ K‖∇u((n− 1)T1)‖2[L2(R2)]4 +K, a.e on [(n− 1)T1, nT1[, n = 1, . . . , N.

By induction, we get that

‖∇u(t)‖2[L2(R2)]4 ≤ K
n‖∇u(0)‖2[L2(R2)]4 + Kn+1 −K

K − 1 , a.e on [(n− 1)T1, nT1[, n = 1, . . . , N,

and thus

sup
t∈[0,T0[

‖∇u(t)‖2[L2(R2)]4 ≤ K
N‖∇u(0)‖2[L2(R2)]4 + KN+1 −K

K − 1 .

Combining this result with Lemma 3.1, we get that for T0 < +∞, the mapping t→ ‖u‖H1(R2) is bounded on [0, T0)

whenever there is no contact between the rigid bodies.

3.1 Proof of Proposition 3.2

Taking the inner product of equation (1.1) with ∂tu+ (Λ̂ · ∇)u− (u · ∇)Λ̂ yields to

10



∫
ΩF (t)

∣∣∣∂u
∂t

∣∣∣2dx+
∫

ΩF (t)

∂u

∂t
·
(

(Λ̂ · ∇)u− (u · ∇)Λ̂
)
dx−

∫
ΩF (t)

∇ · σ(u, p) ·
(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx

= −
∫

ΩF (t)
[(u · ∇)u] ·

(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx+

∫
ΩF (t)

f ·
(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx.

Combining the above equation with the formula in (3.13), we obtain∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ν d

dt

∫
ΩF (t)

|D[u]|2dx+
k∑
i=1

(
mi|h

′′
i (t)|2 + Ji|ω

′
i(t)|2

)
= 2ν

∫
ΩF (t)

(
D[u] : D[(u · ∇)Λ̂]−D[u] : (∇u∇Λ̂)

)
dx

+
k∑
i=1

∫
Bi(t)

ρif(x, t) ·
(
h
′′
i (t) + ω

′
i(t)(x− hi(t))⊥

)
−
∫

ΩF (t)

∂u

∂t
·
(

(Λ̂ · ∇)u− (u · ∇)Λ̂
)
dx

−
∫

ΩF (t)
[(u · ∇)u] ·

(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx

+
∫

ΩF (t)
f ·
(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx, a.e in (0, T1).

(3.16)

By using the estimate in (3.1), there exists a real constant C1 = C1(T0, ν, (ρi, Bi)i=1,...,k), such that the following

holds true for almost t ∈ (0, T1)∣∣∣2ν ∫
ΩF (t)

D[u] : D[(u · ∇)Λ̂]−D[u] : (∇u∇Λ̂)dx
∣∣∣ ≤ C1

(
(1 +K2

1 )‖∇u‖2[L2(ΩF (t))]4 +K4
1
)
,∣∣∣ ∫

Bi(t)
ρif(x, t) ·

(
h
′′
i (t) + ω

′
i(t)(x− hi(t))⊥

∣∣∣ ≤ ρi
2 ‖f‖

2
L2(Bi(t)) + Ji

2 |ω
′
i(t)|2 + mi

2 |h
′′
i (t)|2,∣∣∣ ∫

ΩF (t)

∂u

∂t
·
(

(Λ̂ · ∇)u− (u · ∇)Λ̂
)
dx

∣∣∣ ≤ 1
4

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ C1K

2
1‖∇u‖2[L2(ΩF (t))]4 + C1K

4
1 ,∣∣∣ ∫

ΩF (t)
[(u · ∇)u] ·

(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx

∣∣∣ ≤ 1
8

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ 3‖(u · ∇)u‖2L2(ΩF (t))

+C1K
2
1‖∇u‖2[L2(ΩF (t))]4 + C1K

4
1 ,∣∣∣ ∫

ΩF (t)
f ·
(
∂u

∂t
+ (Λ̂ · ∇)u− (u · ∇)Λ̂

)
dx

∣∣∣ ≤ 1
8

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ C1K

2
1‖∇u‖2[L2(ΩF (t))]4 + 5

2‖f‖
2
L2(ΩF (t)) + C1K

4
1 .

Combining the above estimates with (3.16), we get that

1
2

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ ν

d

dt

∫
ΩF (t)

|D[u]|2dx+ 1
2

k∑
i=1

(
mi|h

′′
i (t)|2 + Ji|ω

′
i(t)|2

)
≤ C1

(
K4

1 + (K2
1 + 1)‖∇u‖2[L2(ΩF (t))]4 + ‖f‖2L2(R2)

)
+ 3‖(u · ∇)u‖2L2(ΩF (t)). (3.17)

We are now in position to estimate the term (u ·∇)u in terms of the left hand side of inequality (3.17). To do this,

we need the following lemmas and we postpone their proof to the Appendix.
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Lemma 3.3 There exists a strong 2-extension operator E for ΩF (t). Moreover, there exists a positive constant

k = k(ε) such that for u ∈ H2(ΩF (t)), we have:

‖Eu‖L2(R2) ≤ k‖u‖L2(ΩF (t)), (3.18)

‖Eu‖H1(R2) ≤ k‖u‖H1(ΩF (t)), (3.19)

‖Eu‖H2(R2) ≤ k‖u‖H2(ΩF (t)). (3.20)

Lemma 3.4 Let u be the unique strong solution of problem (1.1)-(1.6). Then we have

‖u‖H2(ΩF (t)) ≤ K
(∥∥∥∂u

∂t

∥∥∥
L2(ΩF (t))

+ ‖u‖2L2(ΩF (t)) + ‖∇u‖2[L2(ΩF (t))]4 + ‖f‖L2(ΩF (t)) + ‖Λ‖H2(R2) + 1
)
, (3.21)

where K is a positive constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2) and ‖f‖L2(0,T0;L2(R2)).

We return now to complete the proof of Proposition 3.2. Lemma 3.3 implies that

‖(u · ∇)u‖2L2(ΩF (t)) ≤ ‖(Eu · ∇)Eu‖2L2(R2) ≤ ‖Eu‖
2
L4(R2)‖∇Eu‖

2
L4(R2).

Moreover, using the continuous embedding ofH1/2(R2) into L4(R2) and the interpolation inequality in Lions–Magenes

[19], we have that

‖z‖L4(R2) ≤ C2‖z‖H1/2(R2) ≤ C2‖z‖1/2L2(R2)‖z‖
1/2
H1(R2), ∀z ∈ H

1(R2),

where C2 = C2(R2) is a positive real constant. Hence, we get

‖(u · ∇)u‖2L2(ΩF (t)) ≤ C2‖Eu‖L2(R2)‖Eu‖H1(R2)‖∇Eu‖L2(R2)‖∇Eu‖H1(R2)

≤ C2‖u‖L2(ΩF (t))‖u‖H1(ΩF (t))‖Eu‖H1(R2)‖Eu‖H2(R2)

≤ C2‖u‖L2(ΩF (t))‖u‖2H1(ΩF (t))‖u‖H2(ΩF (t))

≤ C2‖u‖L2(ΩF (t))
(
‖u‖2L2(ΩF (t)) + ‖∇u‖2L2(ΩF (t))

)
‖u‖H2(ΩF (t)).

(3.22)

Let K > 1 be a constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2) and ‖f‖L2(0,T0;L2(R2)) that may changes

between lines.

Combining (3.22) with Lemma 3.4, we get that

‖(u · ∇)u‖2L2(ΩF (t)) ≤ K‖u‖L2(ΩF (t))
(
‖u‖2L2(ΩF (t)) + ‖∇u‖2[L2(ΩF (t))]4

)(∥∥∥∂u
∂t

∥∥∥
L2(ΩF (t))

+ ‖u‖2L2(ΩF (t))

+ ‖∇u‖2[L2(ΩF (t))]4 + ‖f‖L2(ΩF (t)) + ‖Λ‖H2(R2) + 1
)
. (3.23)

By Young’s inequality, we get for all ε > 0

‖(u · ∇)u‖2L2(ΩF (t)) ≤
K

4ε‖u‖
2
L2(ΩF (t))

(
‖u‖2L2(ΩF (t)) + ‖∇u‖2[L2(ΩF (t))]4

)2 + ε
(∥∥∥∂u

∂t

∥∥∥2

L2(ΩF (t))
+ ‖u‖4L2(ΩF (t))

+ ‖∇u‖4[L2(ΩF (t))]4 + ‖f‖2L2(ΩF (t)) + ‖Λ‖2H1(R2) + 1
)
, (3.24)

By combining the above inequality with (3.1), we get

‖(u · ∇)u‖2L2(ΩF (t)) ≤ K
(
1 + ‖∇u‖4[L2(ΩF (t))]4

)
+ ε
(∥∥∥∂u

∂t

∥∥∥2

L2(ΩF )
+ ‖f‖2L2(ΩF )

)
. (3.25)
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We set ε = 1
12 in (3.25), then we combine the resulting inequality with that in (3.17) and thus we get that for

almost t in [0, T1]

1
2

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ ν

d

dt

∫
ΩF (t)

|D[u]|2dx+ 1
2

k∑
i=1

(
mi|h

′′
i (t)|2 + Ji|ω

′
i(t)|2

)
≤ K

(
1 + ‖∇u‖4[L2(ΩF (t))]4 + ‖f‖2L2(R2)

)
+ 1

4

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
. (3.26)

Hence, for almost t in [0, T1], we have

1
4

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (t))
+ ν

2
d

dt

∫
R2
|∇u|2dx+ 1

2

k∑
i=1

(
mi|h

′′
i (t)|2 + Ji|ω

′
i(t)|2

)
≤ K

(
1 + ‖∇u‖4[L2(ΩF (t))]4 + ‖f‖2ltr

)
. (3.27)

By integrating (3.27) with respect to t, we obtain for all t in [0, T1]

1
4

∫ t

0

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (s))
ds+ ν

2

∫
R2
|∇u|2dx+ 1

2

k∑
i=1

(
mi

∫ t

0
|h
′′
i (s)|2ds+ Ji

∫ t

0
|ω
′
i(s)|2ds

)
≤ ν

2 ‖∇u0‖2[L2(R2)]4 +K
(

1 +
∫ t

0
‖∇u‖2[L2(R2)]4ds+

∫ t

0
‖∇u‖4[L2(R2)]4ds

)
. (3.28)

The above inequality implies that

‖∇u‖2[L2(R2)]4 ≤ ‖∇u0‖[L2(R2)]4 +K +K

∫ t

0
‖∇u‖4L2(R2)]4ds, a.e on [0, T1]. (3.29)

Applying Gronwall’s lemma to the above inequality yields to

‖∇u‖2[L2(R2)]4 ≤
(
‖∇u0‖2[L2(R2)]4 +K

)
exp
(
K

∫ T1

0
‖∇u‖2[L2(R2)]4ds

)
, a.e on [0, T1], (3.30)

and thus by (3.1), we get that

‖∇u‖2[L2(R2)]4 ≤ K
(
‖∇u0‖2[L2(R2)]4 + 1

)
. a.e on [0, T1]. (3.31)

Moreover, by combining (3.28) with (3.31), we get for almost t on [0, T1]:

1
4

∫ t

0

∥∥∥∂u
∂t

∥∥∥2

L2(ΩF (s))
ds+ ν

2 ‖∇u‖
2
[L2(R2)]4 + 1

2

k∑
i=1

(
mi

∫ t

0
|h
′′
i (s)|2ds+ Ji

∫ t

0
|ω
′
i(s)|2ds

)
≤ ν

2 ‖∇u0‖2[L2(R2)]4 +K +KT1

(
‖∇u0‖2[L2(R2)]4 + 1

)2
. (3.32)

�

4 Mechanism preventing from collision

This section is devoted to accomplish the proof of Theorem 1.2. We follow the approach used in [10] and [15].

We act by contradiction and we assume that collision could take place in finite time under the assumption (H1).

The idea is to construct a proper candidate v and use it in the weak formulation (4.26) leading to a differential

equation which can be integrated so that we get the no-collision result.
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4.1 Construction of the test function

We suppose that T0 < +∞ and we start to prove that collision in pair - as that between the disks B1 and B2 or

between B8 and B7 in Figure 1 - could not take place. Both cases can be summarized by the assumption that one

disk has a collision with only one other disk. Up to renumbering, this assumption can be stated as follows:

d(B1(T0), B2(T0)) = 0, and d(B1(T0), Bi(T0)) > 0, ∀ i = 3, . . . , k. (H2)

Since the disks B1 and B2 collide at T0, then we can choose an initial time t0 < T0 such that for all t ≥ t0 and all

B1 B2

B5

B6

B7

B8

B9

B4

B3

B10

Figure 1: Example of collision at time T0

j /∈ J , we have d(B1(t), B2(t)) < 2rj , where J = {1, 2}. In other words, we can choose initial time t0 such that there

is no possibility to find a disk separating the rigid bodies B1(t) and B2(t) for all t ∈ [t0, T0]. For all i ∈ {2, . . . , k},

we define d1,i(t) := d(B1(t), Bi(t)). Since d1,i(T0) is positive as long as i /∈ J , then β := inf
t0≤t≤T0

min
i/∈J

d1,i(t) > 0.

Also contact at time T0 can only occur at a single point between any pair of disks as the domains of the rigid

bodies are convex.

y2

y1

r2

2δ−2δ
r1

Aδ,h

B1

B2

y2 = ψtop(y1) y2 = ψb(y1)

Figure 2: Geometry in the local coordinates
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We will see later that the expression of the test function v involves the boundary functions of the disks in

the neighborhood of the contact point. This oblige us to define the vector field v at first in the local coordinates

(h1(t), e1(t), e2(t)), where e2(t) = h1(t)− h2(t)
|h1(t)− h2(t)| and e1(t) = −e⊥2 (t), so that we can always represent the bound-

aries of the disks close to the collision point by a suitable boundary functions of simple expressions: one is the

lower boundary of the disk B1 and the other is the upper boundary of the disk B2.

We introduce the change of variable Y defined as follows:

Y (t, x) =
(
− (x− h1(t)) · (h1(t)− h2(t))⊥

|h1(t)− h2(t)| ,
(x− h1(t)) · (h1(t)− h2(t))

|h1(t)− h2(t)|

)
. (4.1)

In what follows, we fix h ∈ (0, dmax) where dmax := sup
t0≤t≤T0

d1,2(t). In the new coordinates, B1 is the disk of

center (0, 0) and radius r1 whereas B2 is the disk of center (0,−r1 − r2 − h) and radius r2 (see Figure 2). Also, we

fix δ > 0 such that 2δ < min(r1, r2), and we define the bridge Aδ,h in the local coordinates by

Aδ,h := {y ∈ R2 : |y1| < 2δ, ψb(y1) < y2 < ψtop(y1)},

where the boundary functions ψtop and ψb of the disks B1 and B2 respectively are given by:

ψtop(y1) := −
√
r2
1 − y2

1 , ∀y1 ∈ [−r1, r1],

ψb(y1) :=
√
r2
2 − y2

1 − r1 − r2 − h, ∀y1 ∈ [−r2, r2].

Moreover, we choose δ such that

Aδ,d1,2(t) ∩Bj(t) = ∅, ∀t ∈ [t0, T0], ∀j /∈ {1, 2}.

Before we proceed, we mention some properties of the boundary functions ψtop and ψb that will be useful later on.

It is easy to see that for all y ∈ Aδ,h, we have:

y2 − ψb(y1) ≤ ψtop(y1)− ψb(y1) and h ≤ ψtop(y1)− ψb(y1). (4.2)

Moreover, there exists a constant K = K(δ, r1, r2) such that

|ψ′top(y1)| ≤ K|y1|, |ψ′b(y1)| ≤ K|y1|, ∀y1 ∈ [−2δ, 2δ], (4.3)

|ψ
′′
top(y1)| ≤ K, |ψ

′′
top(y1)| ≤ K, ∀y1 ∈ [−2δ, 2δ]. (4.4)

Furthermore, the following inequality

t2

2 ≤ 1−
√

1− t2 ≤ t2, ∀t ∈ [−1, 1],

implies that

h+ ay2
1 ≤ ψtop(y1)− ψb(y1) ≤ h+ 2ay2

1 , ∀y1 ∈ [−2δ, 2δ] (4.5)

with a = 1
2r1

+ 1
2r2

.

We turn now to define the test function v. To describe v in the neighborhood of B1, we define a smooth function

φ : R2 7→ R with compact support included in B(0, α) such that φ ≡ 1 on B(0, r1+α
2 ), where

α ≤ min(r1 + β,
√
r2
1 + δ2).
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Then we introduce a smooth function χ : R 7→ [0, 1] such that

χ(r) =

{
1 if |r| ≤ δ,

0 if |r| ≥ 2δ.

We set

vh := ∇⊥g̃h, (4.6)

where g̃h(y) = y1ϕh with ϕh : R2 → R is defined as follows:

ϕh = φ in R2\
(
Aδ,h ∪

(
B2 ∩B(0, α)

))
,

ϕh = (1− χ(y1))φ(y) + χ(y1)
(

y2 − ψb(y1)
ψtop(y1)− ψb(y1)

)2(
3− 2 y2 − ψb(y1)

ψtop(y1)− ψb(y1)

)
inAδ,h,

ϕh = 0 inB2 ∩B(0, α).

Finally, we define

v(t, x) = JX(Y (x, t), t)v(Y (x, t), t), (4.7)

where the mapping v is defined from R2 × [0, T0) into R2 by

v(y, t) = vd1,2(t)(y). (4.8)

Remark 4.1 We note that ϕh and hence vh are regular up to h = 0 outside Aδ,h, and singularities at h = 0

correspond to the term

gh(y) = y1

(
y2 − ψb(y1)

ψtop(y1)− ψb(y1)

)2(
3− 2 y2 − ψb(y1)

ψtop(y1)− ψb(y1)

)
, (4.9)

as it involves the difference term between the boundary functions ψtop and ψb. Hence, all the Sobolev norms of vh
are dominated by a constant in ΩF,h\Aδ,h, where ΩF,h denotes the fluid domain in the new geometry.

We state some properties of vh in the following lemma and in this respect, we refer the reader to [15].

Lemma 4.1 Let h > 0, then vh ∈ H1(R2) and has a compact support. Moreover, we have:

i. ∇ · vh = 0 in R2,

ii. vh = e2 on B1.

iii. vh = 0 on the other disks.

4.2 No collision result

This subsection is dedicated to prove the following theorem from which we can deduce the proof of Theorem

1.2.

Theorem 4.1 Assume (H2) holds true, then we have d(B1, B2)(T0) > 0.

To prove the above theorem, we need some estimates on the test function v. The following lemma shows that we

can perform such estimates on the vector field v instead of v.
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Lemma 4.2 Let u(t) ∈ H1(R2) and v(t) ∈ Lp(R2) be two vector fields with p ≥ 1. We define u(y, t) =

JY (X(y, t), t)u(X(y, t), t), where X denotes the inverse of the diffeomorphism Y defined in (4.1). Then we have:

‖v(t)‖Lp(R2) = ‖v(t)‖Lp(R2), t ∈ [0, T0),

D[u] : D[v] = D[u] : D[v], ∀v ∈ H1(R2).

The above lemma is straightforward from the fact that the diffeomorphism Y is an isometry.

Next, we state the following lemma which enables to estimate some terms in the weak formulation, such as the

non-linear term and the source term.

Lemma 4.3 Let h ∈ (0, dmax) and consider the vector field vh defined in (4.6). Then there exists a constant

Km = Km(δ, r1, r2, dmax) such that the vector field vh ∈ Lp(R2) for all 1 ≤ p < 3 and we have

‖vh‖Lp(R2) ≤ Km. (4.10)

Proof. By Remark 4.1, all the Sobolev norms of vh in ΩF,h\Aδ,h are dominated by a constant. From the definition

of gh in (4.9), we have

vh(y) = ∇⊥
(
y1 (1− χ(y))φ(y)

)
+ gh(y)∇⊥χ(y) + χ(y)∇⊥gh(y), ∀y ∈ Aδ,h.

Using the properties of the boundary functions ψtop and ψb stated in the previous section, we get that there exists

K = K(δ, r1, r2) > 0 and C > 0 such that

|gh(y)| ≤ K, (4.11)∣∣∣∂gh
∂y1

(y)
∣∣∣ ≤ C +K

y2
1

ψtop(y1)− ψb(y1) , (4.12)∣∣∣∂gh
∂y2

(y)
∣∣∣ ≤ C |y1|

ψtop(y1)− ψb(y1) . (4.13)

This implies that for all y ∈ Aδ,h, we have:

|vh,1(y)| ≤ C
(

1 +K + |y1|
ψtop(y1)− ψb(y1)

)
and |vh,2(y)| ≤ C

(
1 +K + Ky2

1
ψtop(y1)− ψb(y1)

)
.

Hence, vh ∈ L1(Aδ,h) and thus it is in L1(R2). For 1 < p < 3, there exists a positive constant Km =

Km(δ, r1, r2, dmax) such that

‖vh(y)‖pLp(Aδ,h) ≤ Km

(
1 +

∫ 2δ

0

yp1(
ψtop(y1)− ψb(y1)

)p−1 dy1

)
.

Using the inequality (4.5), we obtain∫ 2δ

0

yp1(
ψtop(y1)− ψb(y1)

)p−1 dy1 ≤
∫ 2δ

0

yp1(
h+ ay2

1
)p−1 dy1,

and thus

‖vh(y)‖pLp(Aδ,h) ≤ Km

(
1 +

∫ 2δ

0

dy1

yp−2
1

)
.

The integral in the right hand side of the above inequality is finite as |p− 2| < 1, Therefore (4.10) holds.

�

To estimate the term that contains ∂tv in the weak formulation, we need the following lemma:
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Lemma 4.4 Let h ∈ (0, dmax). Then there exists a positive constant Km = Km(δ, r1, r2, dmax) such that∥∥∂hg̃h∥∥L2(R2)
≤ Km. (4.14)

Proof. From the definition of g̃h in (4.6) and by standard calculations, we have for all y ∈ Aδ,h:

∂hg̃h(y)(y) = 6y1χ(y1)
( (y2 − ψb(y1))3

(ψtop(y1)− ψb(y1))4 − 2 (y2 − ψb(y1))2

(ψtop(y1)− ψb(y1))3 + y2 − ψb(y1)
(ψtop(y1)− ψb(y1))2

)
.

Hence, there exists some C > 0 such that

|∂hg̃h(y)| ≤ C |y1|
ψtop(y1)− ψb(y1) , ∀y ∈ Aδ,h.

Combining the above inequality with the fact that g̃h is smooth outside Aδ,h and is with compact support, we get

that there exists Km > 0 that depends on δ, r1, r2 and dmax such that∫
R2
|∂hg̃h(y)|2dy ≤ Km + C

∫ 2δ

0

y2
1

ψtop(y1)− ψb(y1)dy1.

Hence, ∫
R2
|∂hg̃h(y)|2dy ≤ Km + C

a

∫ 2δ

0

ay2
1

h+ ay2
1
dy1,

and as ay2
1 ≤ h+ ay2

1 , we get the estimate (4.14). �

The following proposition shows why the vector field v is a good candidate to our problem.

Proposition 4.1 Let h ∈ (0, dmax) and u ∈ H1(R2) such that for all i ∈ {1, . . . , k}, we have

u(y) = Vu,i + ωi(y − yGi)
⊥ on B(Gi, ri),

where Gi denotes the center of mass of the i-th disk in the local coordinates. Then there exists a positive constant

Km = Km(δ, r1, r2, dmax) such that∣∣∣2ν ∫
Aδ,h

D[vh] : D[u]dy − ñ1(h)
(
Vu,1 − Vu,2

)
· e2

∣∣∣ ≤ Km

(
‖u‖L2(ΩF,h) + ‖u‖L∞(B1∪B2) + ‖∇u‖[L2(R2)]4

)
, (4.15)

where

ñ1(h) =
∫
∂Aδ,h∩∂B1

(
2νD[vh]− qhI

)
ndΓ1 · e2.

Moreover, there exists an absolute constant K = K(δ, r1, r2) such that

ñ1(h) ≥ K

h
3
2
.

Proof. Without loss, we may assume that ν = 1. By noting that

∆vh · u = 2∇ · (D[vh]u)− 2D[vh] : D[u]

and performing integration by parts, we get∫
Aδ,h

(
∆vh −∇qh

)
· udy = −

∫
Aδ,h

D[vh] : D[u]dy +
∫
∂Aδ,h

(
D[vh]n− qhn

)
· udΓ, (4.16)
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for some pressure qh. The idea now is to find a good pressure field qh on Aδ,h such that (4.16) holds. We start

with computing laplacian of vh and we find that

∆vh =

(
−∂112g̃h − ∂222g̃h

∂111g̃h + ∂122g̃h

)
.

We construct the pressure field qh such that

∆vh −∇qh =

(
−2∂112g̃h − y1(1− χ)∂222φ

∂111g̃h

)
.

To match this property, we define

qh(y, t) = ∂12g̃h(y) +
∫ y1

−2δ

12 s χ(s)
(ψtop(s)− ψb(s))3 ds, ∀y ∈ Aδ,h. (4.17)

On the other hand, we have∫
Aδ,h

(
−∆vh +∇qh

)
· udy =

∫
Aδ,h

(
2∂112g̃hu1 − ∂111g̃hu2

)
dy +

∫
Aδ,h

y1(1− χ(y1))∂222φ(y)u1dy.

By performing integration by parts, we obtain∫
Aδ,h

(
2∂112g̃hu1 − ∂111g̃hu2

)
dy = −

∫
Aδ,h

∂11g̃h

(
2∂u1

∂y2
− ∂u2

∂y1

)
dy +

∫
∂Aδ,h

∂11g̃h
(
2u1n2 − u2n1

)
dΓ. (4.18)

For y ∈ Aδ,h, we have

∂11g̃h(y) = ∂11
(
y1(1− χ(y1))φ(y)

)
+ ∂11χ(y1)gh(y) + 2∂1χ (y1)∂1gh(y) + χ(y1)∂11gh(y).

Hence there exists C > 0 and K = K(δ, r1, r2) > 0 such that

|∂11g̃h(y)| ≤ K
(

1 + |y1|
ψtop(y1)− ψb(y1)

)
+ C.

This implies that there exists a positive constant Km = Km(δ, r1, r2, dmax) such that

‖∂11g̃h(s)‖2L2(Aδ,h) ≤ Km

(
1 +

∫ 2δ

0

y2
1

h+ ay2
1
dy1

)
,

and thus

‖∂11g̃h(y)‖2L2(Aδ,h) ≤ Km.

The above inequality implies that∣∣∣ ∫
Aδ,h

∂11g̃h

(
2∂u1

∂y2
− ∂u2

∂y1

)
dy

∣∣∣ ≤ Km

(∥∥∥∂u1

∂y2

∥∥∥
L2(Aδ,h)

+
∥∥∥∂u2

∂y1

∥∥∥
L2(Aδ,h)

)
.

We turn now to estimate the boundary term in (4.18) and in this respect we have∣∣∣ ∫
∂Aδ,h

∂11g̃hu2n1dΓ
∣∣∣ ≤ Km

(
||u||L∞(B1)

∫ 2δ

−2δ

|y1||ψ′top(y1)|3

(ψtop(y1)− ψb(y1))2 dy1+||u||L∞(B2)

∫ 2δ

−2δ

|y1||ψ′b(y1)|3

(ψtop(y1)− ψb(y1))2 dy1

+
∫
∂Aδ,h∩{|y1|=2δ}

∂11g̃hu2n1dΓ
)
. (4.19)
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Noting that ∂11g̃h is regular and odd, we get that∫
∂Aδ,h∩{|y1|=2δ}

∂11g̃hu2n1dΓ =
∫ ψtop(2δ)

ψb(2δ)
∂11g̃h(2δ, y2)(u2(2δ, y2)− u2(−2δ, y2))dy2

=
∫ ψtop(2δ)

ψb(2δ)
∂11g̃h(2δ, y2)

∫ 2δ

−2δ
∂1u2(s, y2)dsdy2.

This implies that there exists a positive constant C such that∣∣∣ ∫
∂Aδ,h∩{|y1|=2δ}

∂11g̃hu2n1dΓ
∣∣∣ ≤ C‖∂1u2‖L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)]).

Combining (4.19) with the above inequality noting (4.3) and (4.5), we obtain that∣∣∣ ∫
∂Aδ,h

∂11g̃hu2n1dΓ
∣∣∣ ≤ Km

(
||u||L∞(B1∪B2) + ‖∂1u2‖L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)])

)
≤ Km

(
||u||L∞(B1∪B2) + ‖∂1u2‖L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)])

)
.

Moreover, we have∣∣∣ ∫
∂Aδ,h

∂11g̃hu1n2dΓ
∣∣∣ ≤ Km

∣∣∣ ∫ 2δ

−2δ
∂11g̃h(y1, ψtop(y1))

(
V 1
u,1 + ω ψtop(y1)

)
dy1

+
∫ 2δ

−2δ
∂11g̃h(y1, ψb(y1))

(
V 1
u,2 + ω ψb(y1)

)
dy1

∣∣∣.
As ∂11g̃h is odd with respect to y1 in the time ψtop and ψb are even with respect to y1, we get that∫

∂Aδ,h

∂11g̃hu1n2dΓ = 0.

Combining (4.19) with (4.3), (4.5) and the above inequality yields to∣∣∣ ∫
Aδ,h

(
∆vh −∇qh

)
· udy

∣∣∣ ≤ Km

(
‖u‖L2(Aδ,h) + ‖u‖L∞(B1∪B2) +

∥∥∥∂u1

∂y2

∥∥∥
L2(Aδ,h)

+
∥∥∥∂u2

∂y1

∥∥∥
L2(Aδ,h)

+
∥∥∥∂u2

∂y1

∥∥∥
L2([−2δ,2δ]×[ψb(2δ),ψtop(2δ)])

)
. (4.20)

We turn now to compute the line integral on (4.16). It is not difficult to check that

qh,
∂vh,1
∂y1

and ∂vh,2
∂y2

are even with respect to y1 whereas
∂vh,1
∂y2

and ∂vh,2
∂y1

are odd with respect to y1. This implies that∫
∂Aδ,h

(
2D[vh]n− qhn

)
· u(t)dΓ = ñ1(h) Vu,1 · e2 + ñ2(h) Vu,2 · e2 +

∫
∂Aδ,h∩|y1|=2δ

(
2D[vh]n− qhn

)
· udΓ

with

ñi(h) =
∫
∂Aδ,h∩∂Bi

(
2D[vh]n− qhn

)
dΓi · e2, i = 1, 2.
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As ∇vh and qh are regular on ∂Aδ,h ∩ {|y1| = 2δ}, then there exists a constant K independent of h such that∫
∂Aδ,h∩|y1|=2δ

(
D[vh]n− qhn

)
· udΓ ≤ K‖u‖H1(Aδ,h).

This implies that∣∣∣2∫
Aδ,h

D[vh] : D[u]dy−ñ1(h)Vu,1 ·e2−ñ2(h)Vu,2 ·e2

∣∣∣ ≤ Km

(
‖u‖L2(ΩF,h) +‖u‖L∞(B1∪B2) +‖∇u‖[L2(R2)]4

)
, (4.21)

By integration by parts, we have∫
Aδ,h

(∆vh −∇qh)dy · e2 = −
∫
∂Aδ,h

(
2D[vh]n− qhn

)
dΓ · e2.

Since∫
∂Aδ,h∩{|y1|=2δ}

(
2D[vh]n− qhn

)
dΓ · e2 = 2

∫ ψtop(2δ)

ψb(2δ)

(
∂vh,1
∂y2

(−2δ, y2) + ∂vh,1
∂y2

(2δ, y2)
)
dy2

+ 2
∫ ψtop(2δ)

ψb(2δ)

(
∂vh,2
∂y1

(−2δ, y2) + ∂vh,2
∂y1

(2δ, y2)
)
dy2,

and as ∂vh,2
∂y1

and ∂vh,2
∂y1

are odd with respect to y1, then the above integral vanishes and hence we get∫
Aδ,h

(−∆vh +∇qh)dy · e2 = ñ1(h) + ñ2(h).

Setting u = e2 in (4.20), we get that ∣∣∣ ∫
Aδ,h

(∆vh −∇qh)dy · e2

∣∣∣ ≤ Km.

This implies that

ñ2(h) = −ñ1(h) +O(Km).

Combining the above result with (4.21), we obtain that∣∣∣2∫
Aδ,h

D[vh] : D[u]dy − ñ1(h)
(
Vu,1 − Vu,2

)
· e2

∣∣∣ ≤ Km

(
‖u‖L2(ΩF,h) + ‖u‖L∞(B1∪B2) + ‖∇u‖[L2(R2)]4

)
, (4.22)

Thus, (4.15) holds.

By similar way, one has:∣∣∣2∫
Aδ,h

|D[vh]|2dy − ñ1(h)Vvh,1 · e2 − ñ2(h)Vvh,2 · e2

∣∣∣
≤ Km

(
‖vh‖L2(Aδ,h)) + ‖vh‖L∞(B1∪B2) +

∥∥∥∂vh,1
∂y2

∥∥∥
L2(Aδ,h)

+
∥∥∥∂vh,2
∂y1

∥∥∥
L2(Aδ,h)

)
.

By Lemma 4.1, we have vh = e2 on B1 and vanishes on B2. This implies that

ñ1(h) ≥ 2
∫
Aδ,h

|D[v1
h]|2dy−Km

(
‖vh‖L2(Aδ,h)) +‖vh‖L∞(B1∪B2) +

∥∥∥∂vh,1
∂y2

∥∥∥
L2(Aδ,h)

+
∥∥∥∂vh,2
∂y1

∥∥∥
L2(Aδ,h)

)
. (4.23)

Standard calculations show that

∂vh,1
∂y2

(y) = −y1(1− χ(y1)∂22φ− 6y1χ(y1)
( 1

(ψtop(y1)− ψb(y1))2 − 2 y2 − ψb(y1)
(ψtop(y1)− ψb(y1))3

)
.
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This implies that ∣∣∣∂vh,1
∂y2

(y)
∣∣∣ ≤ C(1 + |y1|

(ψtop(y1)− ψb(y1))2

)
.

Combining the above estimates with the fact that ∂vh,2
∂y1

= −∂11g̃h, we get that∥∥∥∂vh,1
∂y2

∥∥∥
L2(Aδ,h)

≤ Km

h
3
4
, (4.24)∥∥∥∂vh,2

∂y1

∥∥∥
L2(Aδ,h)

≤ Km. (4.25)

To bound from below D[vh] in [L2(Aδ,h)]4, it suffices to bound from below ∂vh,1
∂y2

in L2(Aδ,h).In this respect, there

exists K = K(δ, r1, r2) such that

‖∂vh,1
∂y2

‖L2(Aδ,h) ≥
K

h
3
4
.

Combining (4.23) with (4.24), (4.25), and the above result, we obtain

ñ1(h) ≥ K

h
3
2
.

�

Now, we give the proof of Theorem 4.1.

Proof of Theorem 4.1 We plug the test function v defined in (4.7) into∫
R2

(
ρu · ∂tv + ρu⊗ u : D[v]− 2νD[u] : D[v] + ρf · v

)
dx = d

dt

∫
R2
u · vdx, (4.26)

and we start to estimate each term separately. Lemma 4.2 and Lemma 4.3 imply that there exists a positive

constant Km = Km(δ, dmax) such that∣∣∣ ∫
R2
ρ(s)f(s) · v(s)dx

∣∣∣ ≤ Km‖ρ‖L∞([0,T0)×R2)‖f‖L2(R2). (4.27)

We turn now to bound the non-linear term and we have∣∣∣ ∫
R2
ρ(s)u(s)⊗ u(s) : D[v(s)]dx

∣∣∣ ≤ Km‖ρ‖L∞([0,T0)×R2)

(
‖u‖2H1(R2) +

∣∣∣ ∫
Aδ,d1,2(s)

u(s)⊗ u(s) : D[v(s)]dx
∣∣∣).

By performing integration by parts, applying Holder inequality and noting that the vector field v is uniformly

bounded outside the Aδ,h, we get∣∣∣ ∫
Aδ,d1,2(s)

u(s)⊗ u(s) : D[v(s)]dx
∣∣∣ ≤ ∣∣∣ ∫

Aδ,d1,2(s)

(u(s) · ∇)u(s) · v(s)dx
∣∣∣+
∣∣∣ ∫

∂Aδ,d1,2(s)

(u(s) · v(s))(u(s) · n)dΓ
∣∣∣

≤ C‖u(s)‖2H1(R2)‖vd1,2(s)‖L5/2(Aδ,d1,2(s)) +Km(‖u(s)‖2L2(R2) + ‖∇u(s)‖2[L2(R2)]4 ).

Combining the above result with Lemma 4.3, we obtain∣∣∣ ∫
R2
ρ(s)u(s)⊗ u(s) : D[v(s)]dx

∣∣∣ ≤ Km‖ρ‖L∞([0,T0)×R2)

(
‖u‖2L∞([0,T0),L2(R2)) + ‖∇u(s)‖2[L2(R2)]4

)
. (4.28)

For simplicity, we denote d1,2(t) by h(t). With this notation and from the definition of the vector field v in (4.7),

we have ∫
R2
ρ(s)u(s) · ∂tv(s)dx =

∫
R2
ρ(s)u(x, s) · ∂t

(
JX(Y (x, s), s)v(Y (x, s), s)

)
dx

=
∫
R2
ρ(s)u(x, s) · ∂t

(
JX(Y (x, s), s)

(
∇⊥y g̃h(s)

)
(Y (x, s))

)
dx.
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By noting that
∂g̃h(s)

∂yi
((Y (x, s), s) =

2∑
j=1

∂Xj
∂yi

(Y (x, s), s)∂xj
(
g̃h(s)(Y (x, s))

)
,

we obtain

JX(Y (x, s), s)
(
∇⊥y g̃h(s)

)
(Y (x, s), s) = ∇⊥x

(
g̃h(s)(Y (x, s))

)
,

and thus ∫
R2
ρ(s)u(s) · ∂tv(s)dx =

∫
R2
ρ(s)u(x, s) · ∂t∇⊥x

(
g̃h(s)(Y (x, s))

)
dx.

By performing integration by parts on the space variable, we get that∫
R2
u(x, s) · ∂t∇⊥x

(
g̃h(s)(Y (x, s))

)
dx =

∫
R2

(
∂u1

∂x2
(x, s)− ∂u2

∂x1
(x, s)

)
∂t

(
g̃h(s)(Y (x, s))

)
dx.

By noting that

∂t

(
g̃h(t)(Y (x, s)

)
= h′(t)∂hg̃h(t)((Y (x, t)) +

2∑
i=1

Y ′i (x, t)∂yi g̃h(t)(Y (x, t)),

and ∥∥∥∂Xi
∂yj

∥∥∥
L∞(R2)

≤ 1,
∥∥∥ ∂Yi
∂xj

∥∥∥
L∞(R2)

≤ 1, ‖Y ′i ‖L∞loc(R2) ≤ c
2∑
i=1

|h′i(t)|,

we get that there exists a positive constant C such that∣∣∣ ∫
R2
u(x, s) · ∂t∇⊥x

(
g̃h(s)(Y (x, s), s)

)
dx

∣∣∣ ≤ C‖∇u(s)‖[L2(R2)]4

{
|h′(s)|

(
‖∂hg̃h(s)‖L2(R2\Ai

δ,h(s))

+
[ ∫

Ai
δ,h(s)

|∂hg̃h(t)(y)|2dy
] 1

2
)

+Km

2∑
i=1

|h
′
i(t)|

}
.

By Lemma 4.4, we get that∣∣∣ ∫
R2
ρ(s)u(s) · ∂tv(s)dx

∣∣∣ ≤ Km‖ρ‖L∞(R2×[0,T0))
(

sup
s∈[0,T0)

|h′(s)|+
2∑
i=1

|h′i(t)|
)
‖∇u(s)‖[L2(R2)]4 . (4.29)

Adding the term ñ1(d1,2(s))(Vu,1 − Vu,2) · e2(h) to both sides of the weak formulation (4.26) and combining the

resulting equation with Proposition 4.1, Lemma 4.2 and the estimates in (4.27), (4.28) and (4.29), we get that∣∣∣ d
dt

∫
R2
ρ(s)u(s) · v(s)dx+ ñ1(d1,2(s))(Vu,1 − Vu,2) · e2(h)

∣∣∣ ≤ K′m(1 + ‖u‖2L2(R2) + ‖∇u‖2[L2(R2)]4
)
,

where K′m = (δ, dM , ‖ρ‖L∞([0,T0)×R2), ‖f‖L2(R2)) is a positive real constant.

By noting that

u(y, s) = JY h
′
1(s) + ω1(s)y⊥, y ∈ ∂B(G1, r1),

u(y, s) = JY h
′
2(s) + ω2(s)(y − yG2 )⊥, y ∈ ∂B(G2, r2),

we obtain (
Vu,1 − Vu,2

)
· e2 = d

′
1,2(s).

This implies that∣∣∣ d
dt

∫
R2
ρ(s)u(s) · v(s)dx+ d

′
1,2(s)ñ1(d1,2(s))

∣∣∣ ≤ K′m(1 + ‖u‖2L2(R2) + ‖∇u‖2[L2(R2)]4
)
.
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Integrating the above inequality from t0 to t < T0, we get that∣∣∣ ∫
R2
ρ(t)u(t) · v(t)dx−

∫
R2
ρ(t)u(t0) · v(t0)dx+

∫ t

t0

d
′
1,2(s)ñ1(d1,2(s))ds

∣∣∣
≤ K′m

(
T0 + sup

t∈[0,T0)
‖u‖2L2(R2) +

∫ t

t0

‖∇u‖2[L2(R2)]4
)
,

Combining together Lemma 3.1 with Lemma 4.3, we get that there exist M > 0 that depends on T0 and the initial

data such that ∣∣∣ ∫ t

t0

d
′
1,2(s)ñ1(d1,2(s))ds

∣∣∣ ≤ K′mM.

With the change of variable h(s) = d1,2(s), we get that∣∣∣ ∫ d1,2(t)

d1,2(t0)
ñ1(h)dh

∣∣∣ ≤ K′mM.

Again by Proposition 4.1, we get that ∣∣∣ ∫ d1,2(t)

d1,2(t0)

dh

h
3
2

∣∣∣ ≤ K′mM,

and thus
1

[d1,2(t)] 1
2
≤ 1

[d1,2(t0)] 1
2

+K′mM.

The last inequality implies that

sup
t≤T0

1
[d1,2(t)] 1

2
≤ K′mM.

�

Proof of Theorem 1.2 By applying Theorem 1.1 and Proposition 3.1, our proof reduces to obtaining that no

Bi`−1

Bi`C1

C2

P
C1 ∩ ΩF,h C2 ∩ ΩF,h

hi`+1

hi`

Bi`+1

Figure 3: Collision between particles dividing the fluid domain into two connected components.
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collision occurs in finite time under the hypothesis (H1). We act by contradiction and we assume that collision

could take place in finite time. We define the the non-empty set J of cardinal 2 ≤ m ≤ k as follows

J =
{
j ∈ {1, . . . , k} : ∃i 6= j, 1 ≤ i ≤ k, d(Bi, Bj)(T0) = 0

}
.

For i ∈ J , we define the non-empty set of indices Ji by

Ji =
{
j ∈ J : j 6= i, d(Bi, Bj)(T0) = 0

}
.

We claim that there exists i ∈ J such that card(Ji) = 1. Otherwise, we have card(Ji) ≥ 2 for all i ∈ J . Hence for a

fixed i0 ∈ J , there exists i1 ∈ Ji0 and as card(Ji1 ) ≥ 2, then there exists i2 ∈ Ji1\{i0}. By recurrence, we construct

a sequence {i`}`∈N such that for all ` ∈ N, we have i`+1 ∈ Ji`\{i`−1}. Since card J is finite, then there exists two

positive integers ` and p such that i`+p = i` and a simple draw shows that the center of masses hi` , . . . , hi`+p of the

disks Bi` , . . . , Bi`+p form a set of vertices of a simple polygon P , whose complement is the union of two connected

components C1 and C2. Furthermore, the fluid domain ΩF,h ⊂ P c and we have ΩF,h ∩ Ci 6= ∅, for i = 1, 2 (see

Figure 3). This contradicts the assumption (H1) in Theorem 1.2.

Let j denote the index of the disk that the disk Bi only collide with at time T0. Up to a renumbering, we assume

that i = 1 and j = 2, so that (H2) holds true. We apply then Theorem 4.1 and we obtain a contradiction.

�

Appendix

A Proof of Lemma 3.3

Let t < T0, 0 < ε < γ and u ∈ H2(ΩF (t)). We consider a family of smooth functions {χi}i=1,...,k each of compact

support included in [−ri − ε
2 , ri + ε

2 ] and equals to one on [−ri, ri]. For each i ∈ {0, . . . , k}, we define the function

u(i) : ΩF (t)→ R2, such that

u(i)(x) = χi(|x− hi(t)|)u(x), 1 ≤ i ≤ k

and

u(0) = u−
k∑
i=1

u(i).

Moreover, for i ∈ {1, . . . , k}, we define the function v(i) : B(hi(0), ri + ε
2 )\Bi(0)→ R2 by

v(i) = u(i)(x+ hi(t)− hi(0)).

We note that v(i) ∈ H2(B(hi(0), ri + ε
2 )\Bi(0)

)
for all i ∈ {1, . . . , k}. We set v(i) = Ev(i), where E is a strong

2-extension operator for ΩF . By Theorem 5.22 in [1], there exists a constant k = k(ε) such that

‖v(i)‖L2(R2) ≤ k‖u(i)‖L2(ΩF (t)), (A.1)

‖v(i)‖H1(R2) ≤ k‖u(i)‖H1(ΩF (t)), (A.2)

‖v(i)‖H2(R2) ≤ k‖u(i)‖H2(ΩF (t)). (A.3)
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We note that v(i) vanishes outside B(hj(t), rj + ε
2 ) for all j 6= i. Finally, we set

Eu = ũ(0) +
k∑
i=1

u(i),

where u(i)(x) = v(i)(x− hi(t) + hi(0)), ∀i ∈ {1, . . . , k} and ũ(0) is the extension of u(0) by zero over the disks. We

remark here that ũ(0) ∈ H2(R2) and for simplicity we remove the tilde.

Hence, for x ∈ ΩF (t) we have

Eu(x) = u(0)(x) +
k∑
i=1

v(i)(x− hi(t) + hi(0)).

If x ∈ B(hj(t), rj + ε
2 )\Bj(t), then x − hj(t) + hj(0) ∈ B(hj(0), rj + ε

2 )\Bj(0) and x /∈ B(hi(t), ri + ε
2 )\Bi(t) for

all i 6= j. Hence, for all i 6= j, we have x− hi(t) + hi(0) /∈ B(hi(0), ri + ε
2 )\Bi(0) and thus

Eu(x) = u(0)(x) + v(j)(x− hj(t) + hj(0))

= u(0)(x) + v(j)(x− hj(t) + hj(0))

= u(0)(x) + u(j)(x)

= u(x).

Now, if x ∈ ΩF (t)\
k⋃
i=1

B(hi(0), ri + ε

2), then x− hi(t) + hi(0) /∈ B(hi(0), ri + ε
2 ) and thus

Eu(x) = u(0)(x) = u(x).

Moreover, there exists a positive real constant k = k(ε) such that

‖Eu‖L2(R2) ≤ ‖u(0)‖L2(R2) +
k∑
i=1

‖u(i)‖L2(R2)

≤ k‖u‖L2(ΩF (t)) +
k∑
i=1

‖v(i)‖L2(R2)

≤ k‖u‖L2(ΩF (t)) + k

k∑
i=1

‖u(i)‖L2(ΩF (t))

Hence, we get

‖Eu‖L2(R2) ≤ k‖u‖L2(ΩF (t)). (A.4)

In a similar way, we can prove

‖Eu‖H1(R2) ≤ k‖u‖H1(ΩF (t)), (A.5)

‖Eu‖H2(R2) ≤ k‖u‖H2(ΩF (t)). (A.6)
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B Proof of Lemma 3.4

We can consider that the solution (u, p) is a solution of the following problem at a fixed time t > 0:
u− ν∆u+∇p = f̃ , in ΩF (t),

∇ · u = 0, in ΩF (t),

u(x, t) = h′i(t) + ωi(t)(x− hi(t))⊥, x ∈ Bi(t), ∀i ∈ {1, . . . , k},

(B.1)

where

f̃ = −∂u
∂t
− (u · ∇)u+ f + u. (B.2)

By using the change of variables X defined in (2.3), we see that (U,P ) as defined in (2.4) satisfies the following

problem: 
U − ν∆U +∇P = g̃, in ΩF ,

∇ · U = 0, in ΩF ,

U |∂Bi = Λ|∂Bi , ∀i ∈ {1, . . . , k},

(B.3)

with

g̃ = ν[(L−∆)U ]− [(G−∇)P ]− [MU ]− [NU ]− ∂U

∂t
+ F + U, (B.4)

where [LU ], [MU ], [NU ], and [GP ] are defined as in (2.12)-(2.15).

By Theorem 2.1 in [6], there exists a unique (U,P ) ∈ H2(ΩF ) × Ḣ1(ΩF ) solution of problem (B.3). Moreover,

there exists a constant C3 = C3(ν,ΩF ) > 0 such that

‖U‖[H2(ΩF )]2 + ‖∇P‖[L2(ΩF )]2 ≤ C3
(
‖g̃‖[L2(ΩF )]2 + ‖Λ‖[H2(R2)]2

)
. (B.5)

We start with estimating the first term in the expression of g̃. We have:

∥∥[(L−∆)U ]i
∥∥
L2(ΩF )

≤
2∑

j,k=1

‖gjk − δjk‖L∞(ΩF )

∥∥∥ ∂2Ui
∂yj∂yk

∥∥∥
L2(ΩF )

+
2∑

j,k=1

∥∥∥∂gjk
∂yj

∥∥∥
L∞(ΩF )

∥∥∥∂Ui
∂yk

∥∥∥
L2(ΩF )

+ 2
2∑

j,k,`=1

‖gk`‖L∞(ΩF )‖Γij,k‖L∞(ΩF )

∥∥∥∂Uj
∂y`

∥∥∥
L2(ΩF )

+
2∑

j,k,`=1

{∥∥∥∂gk`
∂yk

∥∥∥
L∞(ΩF )

‖Γij,`‖L∞(ΩF + ‖gk`‖L∞(ΩF )

∥∥∥∂Γij,`
∂y`

∥∥∥
L∞(ΩF )

+
2∑

m=1

‖gk`‖L∞(ΩF )‖Γmj,`‖L∞(ΩF )‖Γik,m‖L∞(ΩF )

}
‖Uj‖L2(ΩF ),

(B.6)

In what follows, we denote byK a positive constant that depends on ΩF , Bi, ρi, ν, T0, ‖u0‖L2(R2) and ‖f‖L2(0,T0;L2(R2))

that may changes between lines.

From the definition of gij , gi,j and Γki,j respectively in (2.18), (2.16) and (2.17), and by applying the same technique

of proof of Lemma 6.4 and Corollary 6.5 in [24], we get for all 1 ≤ i, j, k ≤ 2:
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‖gij − δij‖L∞(R2) ≤ KT1, ‖gij − δij‖L∞(R2) ≤ KT1,∥∥∥∂gij
∂yk

∥∥∥
L∞(R2)

≤ KT1,

∥∥∥∂gij
∂yk

∥∥∥
L∞(R2)

≤ KT1,

‖Γki,j‖L∞(R2) ≤ KT1,

∥∥∥∂Γki,j
∂y`

∥∥∥
L∞(R2)

≤ KT1.

Combining the above estimates with (B.6), we obtain that∥∥[(L−∆)U ]i
∥∥
L2(ΩF )

≤ KT1‖U‖H2(ΩF ). (B.7)

By the same way, we get that there exists some positive constant C such that∥∥[(∇−G)P ]i
∥∥
L2(ΩF )

≤ KT1‖∇P‖L2(ΩF ),∥∥[MU ]i
∥∥
L2(ΩF )

≤ C‖U‖H1(ΩF ),∥∥[NU ]i
∥∥
L2(ΩF )

≤ ‖(U · ∇)U‖L2(ΩF ) +KT1‖U‖2L2(ΩF ),

and thus

‖g̃‖[L2(ΩF )]2 ≤
∥∥∥∂U
∂t

∥∥∥
L2(ΩF )

+ ‖(U · ∇)U‖L2(ΩF ) +KT1(‖U‖H2(ΩF ) + ‖∇P‖L2(ΩF ))

+ C(‖F‖L2(ΩF ) + ‖U‖2L2(ΩF ) + ‖∇U‖2L2(ΩF ) + 1). (B.8)

Combining the above inequality with the estimate in (B.5), we obtain for T1 is small enough:

‖U‖H2(ΩF ) + ‖∇P‖L2(ΩF ) ≤
C3

1−KT1

{∥∥∥∂U
∂t

∥∥∥
L2(ΩF )

+ ‖(U · ∇)U‖L2(ΩF ) + ‖U‖2L2(ΩF ) + ‖∇U‖2L2(ΩF )

+ ‖F‖L2(ΩF ) + ‖Λ‖H2(R2) + 1
}
. (B.9)

Bounding the transform X and its derivatives up to order 3 from above as in Lemma 6.4 in [24], we get that

‖u‖L2(ΩF (t)) ≤ K‖U‖L2(ΩF ), (B.10)

‖U‖L2(ΩF ) ≤ K‖u‖L2(ΩF (t)), (B.11)∥∥∥∂U
∂t

∥∥∥
L2(ΩF )

≤ K
(∥∥∥∂u

∂t

∥∥∥
L2(ΩF (t))

+ ‖u‖H1(ΩF (t))
)
, (B.12)

‖(U · ∇)U‖L2(ΩF ) ≤ K‖u‖2H1(ΩF (t)), (B.13)

‖∇u‖[L2(ΩF )]4 ≤ K‖U‖H1(ΩF ), (B.14)

‖∇2u‖[L2(ΩF )]8 ≤ K‖U‖H2(ΩF ). (B.15)

Combining these estimates with that in (B.9), we obtain the required inequality in (3.21).
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