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Abstract

The main objective of this paper is to present a theory for computing the
Hochschild cohomology of algebras built on a specific data, namely multi-
extension algebras. The computation relies on cohomological functors evalu-
ated on the data, and on the combinatorics of an ad hoc quiver. One-point
extensions are occurrences of this theory, and Happel’s long exact sequence
is a particular case of the long exact sequence of cohomology that we obtain
via the study of trajectories of the quiver. We introduce cohomology along
paths, and we compute it under suitable Tor vanishing hypotheses. The cup
product on Hochschild cohomology enables us to describe the connecting
homomorphism of the long exact sequence.

Multi-extension algebras built on the round trip quiver provide square
matrix algebras which have two algebras on the diagonal and two bimodules
on the corners. If the bimodules are projective, we show that a five-term
exact sequences arises. If the bimodules are free of rank one, we provide a
complete computation of the Hochschild cohomology. On the other hand, if
the corner bimodules are projective without producing new cycles in the data,
Hochschild cohomology is that of the product of the algebras on the diagonal
for large enough degrees.

The word algebra always means an associative k-algebra over a field k;
an algebra is not necessarily finite dimensional.
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1 Introduction

Hochschild cohomology of an algebra over a field is an interesting and not fully
understood tool, see for instance [2]. It has been defined in 1945 by Hochschild in
[18], it provides the theory of infinitesimal deformations and the deformation theory
on the variety of algebras of a fixed dimension, see for instance [13]. Moreover it
is a Gerstenhaber algebra, and it is related with the representation theory of the
given algebra, see for instance [1, 6]. Rephrasing the introduction of [20], observe
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that Hochschild cohomology is not functorial, there is no natural way to relate
the Hochschild cohomology of an algebra to that of its quotient algebras or of its
subalgebras. In exchange, the idea is to find a way of relating the cohomology of an
algebra to that of an easier or smaller algebra. Several articles go in this direction,
starting with the work of Happel in [16], see for instance [3, 5, 9, 14, 15, 17, 20, 22].

In this paper we consider associative multi-extension zero algebras over a field
k, not necessarily finite dimensional, determined by a set of k-algebras and a set
of bimodules over them. They can also be viewed as cleft singular extensions
Λ = A⊕M - see [21, p. 284], where in addition the subalgebra A is provided with
a finite set E of central orthogonal idempotents; recall that M is an A-bimodule
verifying M2 = 0. This setting provides an ad hoc quiver as follows: its vertices are
the idempotents of E, and there is an arrow from a vertex x to a different one y
in case yMx is not zero. Moreover, this quiver coincides with the Peirce E-quiver,
see Definition 2.6.

We develop tools to compute the Hochschild cohomology of Λ, in relation to the
value of cohomological functors related to this specific quiver, and to the algebras
and the bimodules involved. More precisely, a finite quiver Q is called simply laced
(see for instance [19]) if it has neither double arrows nor loops. A Q-data ∆ is a
collection of algebras {Ax} associated to each vertex x, a set of bimodules {Ma}
associated to each arrow a, and a family of bimodule maps verifying associative
constraints - this family will provide the product map amongst the bimodules in
the algebra to be built. We set A = ×x∈Q0Ax and M = ⊕a∈Q1Ma; the multi-
extension algebra Λ∆ is, as a vector space, A⊕M . If all the maps of the family are
zero, then Λ∆ is called a multi-extension zero algebra. In this case, Λ∆ is a cleft
singular extension, provided with the set Q0 of central orthogonal idempotents of
A.

One-point extensions are occurrences of multi-extension zero algebras: indeed
they are built on the simply laced quiver which has just an arrow. One of the
algebras associated to its vertices is k. In Section 2 we precise the definitions and
we provide other examples of multi-extension zero algebras.

In Section 3 we consider a multi-extension algebra which is not necessarily a
multi-extension zero algebra, built on a simply laced quiver Q provided with a Q-
data. We analyze the complex of cochains relative to the separable subalgebra
given by the vertices of Q, which computes the Hochschild cohomology of the
multi-extension algebra. The main tool that we introduce are the trajectories over
Q. A trajectory is an oriented path of Q provided with non negative integers at each
vertex, called waiting times. The duration of the trajectory is the sum of the length
of the path, plus the waiting times. The cochains of the complex decompose along
the trajectories, and we describe the coboundary relative to this. The results are
stated for multi-extension algebras, but they are valid as well for small k-categories,
with possibly an infinite number of objects, and for Hochschild-Mitchell cohomology,
see [23].

In Section 4, we focalize on multi-extension zero algebras and use the tools we
have considered. Each non cycle δ of Q provides a subcomplex, it is given in each
degree by the trajectories over δ whose duration equals the degree. This way we
obtain a short exact sequence of complexes. One of its interests is that the quotient
complex decomposes as a direct sum along cycles of Q, and that this decomposition
is again based on trajectories over paths of Q which are now cycles.

The above sketched analysis shows that for any path ω of Q, it is natural to
define a cohomology theory H•ω(∆) along ω of the Q-data ∆. We infer a coho-
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mology long exact sequence from the short exact sequence, which makes use of the
cohomology theory along paths of Q.

Section 5 mostly concerns the computation of the cohomology along paths of a
Q-data. If the path is a vertex x, trajectories over it are just waiting times on x, and
the cohomology theory along x is the Hochschild cohomology of the algebra Ax. A
main result is that the cohomology along an arrow a is Ext of Ma with itself, with
a shift of one in the degrees. This already shows that the long exact sequence that
we obtain coincides with the long exact sequence of Happel for one-point extensions
[16], as well as with its generalization for corner algebras obtained independently
in [8], [22] and [15]. In order to go further in the computation of the cohomology
theory along paths, Tor vanishing hypotheses are needed. More precisely, let ω
be a path of length two. If Tor between the bimodules of the Q-data is zero in
positive degrees, then H•ω(∆) is an Ext functor, shifted by two in the degree. We
provide a generalization of this result for paths of higher length. Observe that the
Tor vanishing conditions that we require in order to compute the cohomology along
paths resemble to the ones required for an ideal to be stratified (see [11, 20]) as
well as to the hypotheses used recently in [17].

The connecting homomorphism ∇ of the long exact sequence that we have ob-
tained is important for computations. For describing ∇, in Section 6 we consider
the multiplicative structure involved. We show that cohomology along paths has a
cup product verifying the graded Leibniz rule, and which is compatible with com-
position of paths. In our context, there is a canonical element in the cohomology
along paths, that is the sum of the identity maps as endomorphisms of each bimod-
ule, which provides a 1-cocycle in the sum of the cohomologies along arrows. This
enables to describe ∇, for a multi-extension zero algebra, as the graded commutator
with this canonical element - this way we recover a result in [9] as a particular case.
In this process we reobtain part of the results of [14], for instance that for one-point
extensions the connecting morphism is a graded algebra map.

In Section 7 we specialize our results to square algebras, namely multi-extension
algebras built on the so-called round trip quiver Q = ·� · provided with a Q-data.
If the two bimodules associated to the arrows - that is the corner bimodules of
the 2 × 2 matrix algebra - are projective, and if the bimodule maps of the data
are zero, the algebra is called a null-square projective algebra. For these algebras
we show that the cohomology long exact sequence that we have obtained splits
into five-term exact sequences. Using this fact, we provide explicit formulas for
the Hochschild cohomology of a null-square projective algebra Λ, in terms of the
Hochschild cohomology of the algebras at the vertices of Q - that is the algebras
on the diagonal - and the kernel and cokernel in even degrees of the non trivial
part ∇′ of ∇. As a consequence, the Hochschild cohomology of Λ contains that
of the algebras of the Q-data: the inclusion is canonical in even degrees while it
is obtained by choosing a splitting of a canonical short exact sequence in the odd
ones. Next we prove in Section 7 that a square algebra which corner bimodules
are free of rank one is necessarily a null-square algebra. In other words, the family
of bimodule maps is necessarily zero for a Q-data based on the round trip quiver
Q, and if the bimodules associated to the arrows are free of rank one. We also
show that for such an algebra, ∇′ is injective in even positive degrees. In the finite
dimensional case this leads to explicit formulas for the dimension of the Hochschild
cohomology. Moreover, we describe the presentation of an algebra of this sort by
means of its Gabriel quiver and admissible relations, relying on such presentations
for the algebras on the diagonal.
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In Section 8 we consider once more null-square algebras, but focussing on an
opposite family to the one considered in Section 7. Here the corner bimodules are
projective, provided by some couples of idempotents belonging to complete systems
of orthogonal idempotents of the algebras which are on the diagonal. This leads to a
combinatorial data encoded in the Peirce quiver which conveys enough information
for Hochschild cohomology purposes. We prove that if the corner projective bimod-
ules do not produce new oriented cycles in the Peirce quiver, then the Hochschild
cohomology of the null-square algebra coincides with that of the diagonal algebra
in large enough degrees. This fact differs from the results of Section 7, indeed free
rank one corner bimodules produce plenty of new cycles in the Peirce quiver.

To end this Introduction, we point out a possible follow-up to our work. In
[24] the authors introduced a theory of support variety for modules over any Artin
algebra A. This is defined in terms of a quotient of the Hochschild cohomology ring.
They consider the Hochschild cohomology ring and divide by the ideal generated
by the homogeneous nilpotent elements. Let us call this associated ring R(A).
Observe that the odd degree elements have square zero, so they are nilpotent. The
ring R(A) is always a commutative ring, if it is finitely generated then its spectrum
defines a variety, and it is over this variety that they define the support variety of
a module. We believe that our results can be used to compare the associated ring
of the algebras involved in our work. For instance Theorem 6.5 shows that for a
multi-extension algebra, the image of the considered map is in the ideal generated
by the nilpotent elements of the Hochschild cohomology. Also, from Corollary 7.4

we infer that for Λ =

(
A N
M B

)
a null-square projective algebra, with A = A×B

and M = M ⊕ N , if there is a positive integer h such that M⊗Ah = 0, then the
associated ring R(Λ) is isomorphic to R(A) in large enough degrees.

2 Multi-extension algebras

A simply laced quiver is a finite quiver Q without multiple parallel arrows nor loops
(see for instance [19, p. 112]). More precisely, a quiver Q is given by a finite set Q0

of vertices, a finite set Q1 of arrows and two maps s and t from Q1 to Q0 called
source and target. The quiver is simply laced if there is at most one arrow from one
vertex to another one and if there is no arrow where the source and target vertices
are the same.

Let k be a field and let Q be a simply laced quiver.

Definition 2.1 A Q-data ∆ consists in a set of algebras {Ax}x∈Q0
Ax, a set

{Ma}a∈Q1
of bimodules, where Ma is an At(a) − As(a)-bimodule, and a family

of bimodule maps
α = {αz,y,x}z,y,x∈Q0

satisfying obvious associativity constraints in order to make A ⊕M an associative
algebra, where A = ×x∈Q0

Ax and M = ⊕a∈Q1
Ma.

Let ∆ be a Q-data. Each Ma is an A-bimodule by extending the actions by
zero, hence M is an A-bimodule as well.

Definition 2.2 The multi-extension algebra Λ∆ is, as vector space A⊕M , where
A is a subalgebra. If a ∈ A and m ∈ M , then the products am and ma are given
by the actions. The product on M is determined by the family α.
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The algebra Λ∆ is a multi-extension zero algebra if all the maps of the family
α are zero.

Example 2.3 Recall that if Ay is an algebra and M is a left Ay-module, the one-

point extension Ay[M ] is the algebra

(
k 0
M Ay

)
=

(
Ay M
0 k

)
. This is also

an instance of a multi-extension zero algebra, where Q = x· a−→ ·y.

Example 2.4 More generally, let Ax and Ay be algebras, let Ma be an Ay −
Ax-bimodule and let Mb be an Ax − Ay-bimodule. The null-square algebra (see

for instance [10] or [5]) is

(
Ax Mb

Ma Ay

)
with matrix multiplication given by the

bimodule structures of Ma and Mb, and setting mamb = 0 = mbma for all ma ∈
Ma and mb ∈ Mb. This is again an instance of a multi-extension zero algebra,
where Q is the round trip quiver x·� ·y.

Definition 2.5 A system E of an algebra Λ is a finite set of orthogonal idempotents
of Λ which is complete, that is

∑
x∈E x = 1.

Definition 2.6 Let Λ be an algebra provided with a system E. The Peirce E-quiver
has set of vertices E. For x, y ∈ E, there is an arrow from x to y if and only if
x 6= y and yΛx 6= 0.

Remark 2.7

• A Peirce E-quiver is simply laced.

• Let Λ∆ be a multi-extension algebra given by a quiver Q and a Q-data ∆.
The Peirce Q0-quiver of Λ∆ is Q.

Let Q be a finite quiver and kQ be its path algebra. Let 〈Q1〉 be the two-sided
ideal of kQ generated by the arrows. A two-sided ideal I of kQ is admissible if
I ⊂ 〈Q1〉2 and if there exist a positive integer n such that I ⊂ 〈Q1〉n. The Gabriel
quiver - also called Ext-quiver - of Λ = kQ/I is Q, its vertices are the simple
modules and the number of arrows is the k-dimension of Ext1 between them.

Proposition 2.8 Let Λ = kQ/I be an algebra presented as above. The Peirce
Q0-quiver of Λ is obtained as follows.

• First delete loops,

• for x 6= y, add an arrow from x to y if there exists a path from x to y in Q
which is not in I - that is the path is not zero in Λ,

• finally replace multiple parallel arrows by only one arrow.

We assert that an algebra Λ provided with a system E has an evident multi-
extension algebra structure as follows. Let Q be its Peirce E-quiver, and let ∆
be the Q-data given by the algebras xΛx for each x ∈ E, the bimodules yΛx for
x, y ∈ E, and the bimodule maps

αz,y,x : zΛy ⊗yΛy yΛx→ zΛx

determined by the product of Λ. It is evident that Λ = Λ∆.
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Proposition 2.9 An algebra Λ is a multi-extension zero with respect to a system
E if and only if (zΛy)(yΛx) = 0 for all z 6= y and y 6= x in E.

We will say that Λ is a multi-extension zero algebra without referring to a system
E.

Recall that a cleft singular extension algebra (see [21, p. 284]) is an algebra Λ
with a decomposition Λ = A ⊕M, where A is a subalgebra and M is a two-sided
ideal of Λ verifying M2 = 0. These algebras are also called trivial extensions, see
for instance [1] and [4, 3] where the natural generalization for abelian categories is
considered.

A multi-extension zero algebra is thus a cleft singular extension A⊕M , with in
addition a complete set of central orthogonal idempotents of A.

Example 2.10 Let R be the quiver given by two quivers Q1 (which we view hor-
izontally upstairs) and Q2 (horizontally downstairs), together with a finite set of
vertical down arrows joining some of the vertices of Q1 to vertices of Q2, as well as
an analogous set of vertical up arrows. Let I be the two-sided ideal of kR generated
by the paths which contain two vertical arrows.

The algebra Λ = kR/I can be viewed in a natural way as a multi-extension
zero algebra. Indeed, for i = 1, 2, let xi be the sum of the vertices of Qi. The
set E = {x1, x2} is a system of Λ. The Peirce E-quiver is the round trip quiver
Q = x1

· � ·x2
, where the arrow from x1 to x2 is called a and the reverse one is

called b. The algebras of the Q-data are Ax1
= kQ1 and Ax2

= kQ2. Notice that
the bimodules Ma and Mb are projective bimodules.

Finally we record that a multi-extension algebra Λ∆ encodes a k-category: its
objects are the vertices of the quiver, the endomorphisms of the objects are the
algebras, and the morphisms between distinct objects are the bimodules. The com-
position of morphisms between different objects is given by the family α.

3 Hochschild cohomology of multi-extension algebras

In this section we provide tools for computing the Hochschild cohomology of a multi-
extension algebra, which will be mainly used for multi-extension zero algebras.

Let Λ be an algebra and let Z be a Λ-bimodule. By definition, the Hochschild
cohomology of Λ with coefficients in Z is

Hn(Λ, Z) = ExtnΛ⊗Λop(Λ, Z).

For Z = Λ it is usual to write HHn(Λ) instead of Hn(Λ,Λ).
The following result is well-known, the proof is analogous to the one sketched

in [10] for Hochschild homology:

Lemma 3.1 Let Λ be an algebra, let D be a separable subalgebra of Λ and let Z
be a Λ-bimodule. The cohomology of the complex J•(Z)

0→ ZD
d→ HomD−D(Λ, Z)

d→ HomD−D(Λ⊗D Λ, Z) · · · d→ HomD−D
(
Λ⊗Dn, Z

) d→ · · ·

is H∗(Λ, Z), where ZD = {z ∈ Z | dz = zd for all d ∈ D} and HomD−D stands
for HomD⊗Dop . The definition of the maps d is provided by the same formulas that
those for computing Hochschild cohomology:
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• for n > 0

(df)(x1 ⊗ x2 ⊗ · · · ⊗ xn+1) = x1f(x2 ⊗ x3 ⊗ · · · ⊗ xn+1)

+

n∑
1

(−1)if(x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1)

+ (−1)n+1f(x1 ⊗ x2 ⊗ · · · ⊗ xn)xn+1,

• for n = 0 and z ∈ ΛD, we have (dz)(x) = xz − zx.

Let Λ∆ be a multi-extension algebra and let D = ×x∈Q0
k be the separable

subalgebra of A = ×x∈Q0
Ax given by the inclusions k ⊂ Ax. Next we will provide

a canonical decomposition of the space of n-cochains Jn(Λ∆).
For any quiver Q and m > 0, a path of length m is a sequence of arrows

ω = am . . . a1 which are concatenated, that is t(ai) = s(ai+1) for all i. The set
of vertices Q0 is the set of paths of length 0; if x ∈ Q0, then s(x) = t(x) = x.
The set of paths of length m is denoted Qm. The set of paths of length less or
equal to m is denoted Q≤m. The maps s and t are extended to the set of paths by
s(ω) = s(a1) and t(ω) = t(am).

A path ω is a cycle if s(ω) = t(ω). We denote CQm the set of cycles of length
m, note that CQ0 = Q0. Its complement in Qm is the set of non cycles of length
m that we denote DQm.

Definition 3.2 Let Q be a simply laced quiver, let m > 0 and let ω = am · · · a1 ∈
Qm. The set Tn(ω) of trajectories of duration n over ω is the set of sequences

τ = t(am)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1

where each pi is a non negative integer and n = m+
∑m+1

1 pi. The integer n−m
is the total waiting time of the trajectory. For p > 0 and x ∈ Q0, the symbol xp

denotes the sequence (x, x, . . . , x) where x is repeated p times. The waiting time
of the trajectory xp over x is p. If p = 0, the symbol x0 is the empty sequence, it
corresponds to a 0 waiting time at x.

We record the following facts:

• If x is a vertex, then Tn(x) = {xn} for n ≥ 0.

• If ω ∈ Qm and n < m, then Tn(ω) = ∅.

• If ω ∈ Qm, then Tm(ω) has a unique element

t(am)0, am, s(am)0, . . . , s(a2)0, a1, s(a1)0

of total waiting time zero and duration m.

Remark 3.3 By definition, a trajectory τ over a path ω is a sequence of vertices
and arrows which are concatenated, that is the product of two successive entries of
τ is not zero in the path algebra kQ. Moreover, the product of all successive entries
of τ is equal to ω in kQ.
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Definition 3.4 Let Q be a simply laced quiver with a Q-data ∆ and let ω =
am . . . a1 ∈ Qm for m > 0. For n ≥ m, let

τ = t(am)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1 ∈ Tn(ω).

The evaluation of τ at ∆ is the vector space

τ∆ = A
⊗pm+1

t(am) ⊗Mam ⊗A
⊗pm
s(am) ⊗ · · · ⊗A

⊗p2
s(a2) ⊗Ma1 ⊗A

⊗p1
s(a1)

where all the tensor products are over k. If x ∈ Q0 and τ ∈ Tn(x), then τ∆ = A⊗nx .
By definition, if A is a an algebra, then A⊗0 = k.

Proposition 3.5 Let Q be a simply laced quiver with a Q-data ∆, let Λ∆ be the
corresponding multi-extension algebra, and let Z be a Λ∆-bimodule. For n > 0 the
following decompositions hold:

(Λ∆)⊗Dn =
⊕

ω∈Q≤n

 ⊕
τ∈Tn(ω)

τ∆

 (3.1)

Jn(Z) =
⊕

ω∈Q≤n

 ⊕
τ∈Tn(ω)

Homk (τ∆, t(ω)Zs(ω))

 . (3.2)

Moreover
J0(Λ) = ΛD = ×x∈Q0

Ax =
⊕
x∈Q0

⊕
τ∈T0(x)

τ∆.

Proof. The proof of (3.1) is by induction on n, we only describe in detail the low
degree cases. Recall that Λ∆ = A⊕M , hence

(Λ∆)⊗D (Λ∆) = (A⊗D A)⊕ (A⊗D M)⊕ (M ⊗D A)⊕ (M ⊗D M) .

For x ∈ Q0, let ex be the idempotent of D with value 1 at x and 0 at other
vertices. Note that {ex}x∈Q0

is a complete set of central orthogonal idempotents
of A. Actually

Aex = Ax = exA.

Observe that if x 6= y, then

aex ⊗ eya′ = ae2
x ⊗ eya′ = aex ⊗ exeya′ = 0,

so Ax ⊗D Ay = 0. Moreover Ax ⊗D Ax = Ax ⊗Ax. Hence

A⊗D A =
⊕
x∈Q0

Ax ⊗Ax.

The direct summand Ax⊗Ax corresponds to the trajectory x2 of total waiting time
2 and duration 2 at the vertex x.

Observe that if a ∈ Q1, then Ma = et(a)Mes(a) = et(a)(Λ∆)es(a), while
eyMex = 0 if there is no arrow from x to y in Q.

M =
⊕
a∈Q1

Ma =
⊕

x,y∈Q0

eyMex.
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If z 6= t(a), then Az ⊗D Ma = 0, while At(a) ⊗D Ma = At(a) ⊗Ma. Hence

A⊗D M =
⊕
a∈Q1

At(a) ⊗Ma.

Similarly

M ⊗D A =
⊕
a∈Q1

Ma ⊗As(a).

Each direct summand above corresponds to a path of length 1 - that is an arrow a
- and the trajectories (t(a)1, a, s(a)0) or (t(a)0, a, s(a)1) over a, which are of total
waiting time 1 and duration 2. Analogously, we obtain the decomposition

M ⊗D M =
⊕

{ω=a2a1∈Q2}

Ma2 ⊗Ma1 .

Each direct summand corresponds to the unique trajectory over a2a1 of total waiting
time 0 and duration 2.

The next observations will prove (3.2). Recall that D = ×x∈Q0kex is a semisim-
ple algebra. Hence a D-bimodule U has a canonical decomposition into its isotypic
components U = ⊕x,y∈Q0

eyUex. Observe that each direct summand of (3.1) is a
D-bimodule. More precisely for τ ∈ Tn(ω), we have that τ∆ is a direct summand
of the isotypic component

et(ω)

[
(Λ∆)⊗Dn

]
es(ω).

Let U and V be D-bimodules. The following is immediate - and it is an instance
of Schur’s Lemma: if y 6= t or x 6= u, then

HomD(eyUex, etV eu) = 0,

while
HomD(eyUex, eyV ex) = Homk(eyUex, eyV ex).

�

Our next aim is to use the decomposition of cochains that we have obtained in
Proposition 3.5 in order to describe the coboundary d of Lemma 3.1.

Definition 3.6 Let

τ = t(am)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1

be a n-trajectory over a path ω = am . . . a1. The set τ+ is the union of:

• τ+
0 , the set of n + 1-trajectories obtained by increasing a waiting time of τ

by one.

• τ+
1 , the set of n+ 1-trajectories

t(c)0, c, s(c)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1

where c ∈ Q1 is any arrow after ω, that is verifying s(c) = t(am).

Similarly, τ+
1 contains also the trajectories obtained by adding any arrow c

before ω, that is verifying t(c) = s(a1).
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• τ+
2 , the set of n+ 1-trajectories obtained by replacing any arrow ai by some

path a′′i a
′
i of length two which is parallel to ai, that is s(ai) = s(a′i) and

t(ai) = t(a′′i ).

Definition 3.7 Let ω be a path of Q. We denote by ∆ω the At(ω)−As(ω)-bimodule

t(ω)(Λ∆)s(ω).

Observe that if there is no parallel arrow to ω - that is there is no arrow a such
that s(a) = s(ω) and t(a) = t(ω) - and ω is a non cycle, then ∆ω = 0. On the
other hand if such an arrow a exists, then ∆ω = Ma 6= 0. If ω is a cycle, then
∆ω = As(ω) = At(ω).

Definition 3.8 The space of n-cochains over a trajectory τ ∈ Tn(ω) is

Jτ = Homk (τ∆, ∆ω) .

Proposition 3.9 Let d be one of the coboundaries of Lemma 3.1. The following
holds

dJτ ⊂
⊕
σ∈τ+

Jσ.

Proof. Let Tn be the set of trajectories of duration n and let τ ∈ Tn. Let
fτ ∈ Jτ , write dfτ =

∑
σ∈Tn+1

(dfτ )σ the decomposition of dfτ according to (3.2).

We assert that if σ /∈ τ+, then (dfτ )σ = 0. Recall that

(dfτ )(x1 ⊗ x2 ⊗ · · · ⊗ xn+1) = x1fτ (x2 ⊗ x3 ⊗ · · · ⊗ xn+1)

+

n∑
i=1

(−1)ifτ (x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1)

+ (−1)n+1fτ (x1 ⊗ x2 ⊗ · · · ⊗ xn)xn+1.

Let x1⊗x2⊗· · ·⊗xn+1 ∈ σ∆ where σ /∈ τ+. We will prove that each summand
above is zero.

- If x1fτ (x2⊗x3⊗· · ·⊗xn+1) 6= 0, then fτ (x2⊗x3⊗· · ·⊗xn+1) 6= 0, hence
0 6= x2 ⊗ x3 ⊗ · · · ⊗ xn+1 ∈ τ∆. Moreover, x1 belongs either to At(ω) or to
a bimodule Mc for c ∈ Q1 with s(c) = t(ω). This is equivalent respectively
to σ ∈ τ+

0 or σ ∈ τ+
1 .

- If fτ (x1⊗· · ·⊗xixi+1⊗· · ·⊗xn+1) 6= 0, then 0 6= x1⊗· · ·⊗xixi+1⊗· · ·⊗
xn+1 ∈ τ∆.

– If xixi+1 belongs to an algebra Az, then xi ∈ Az and xi+1 ∈ Az. Hence
σ is obtained from τ by increasing by one the waiting time at the vertex
z, that is σ ∈ τ+

0 .

– If xixi+1 belongs to a bimodule Ma for some arrow a of ω, then

∗ either xi ∈ At(a) and xi+1 ∈ Ma, or xi ∈ Ma and xi+1 ∈ As(a),

that is σ ∈ τ+
0 .

∗ or xi ∈ Ma′′ and xi+1 ∈ Ma′ for a path of length two a′′a′ which
is parallel to a, that is σ ∈ τ+

2 .

10



- If the last summand is non zero, the proof is analogous to the first case.

�

The results of this section are given for multi-extension algebras, that is for alge-
bras provided with a system E. Recall that E is a finite set, hence the requirement
that E is complete makes sense. However the results of this section are actually
true as well for Hochschild-Mitchell cohomology (see [23]) of a small k-category,
with possibly an infinite number of objects.

4 A long exact sequence for multi-extension zero algebras

The result of Proposition 3.9 can be made more precise for a multi-extension zero
algebra. Let Q be a simply laced quiver provided with a Q-data ∆ = (A,M), where
A = ×x∈Q0

Ax and M = ⊕a∈Q1
Ma. Let Λ∆ be the corresponding multi-extension

zero algebra.

Definition 4.1 Let ω ∈ Qm. The vector space of n-cochains along ω is

Jnω =
⊕

τ∈Tn(ω)

Jτ =
⊕

τ∈Tn(ω)

Homk (τ∆,∆ω) .

Remark 4.2 Let ω ∈ Qm. If n < m, then Jnω = 0. If n = m and ω = am . . . a1,
then

Jmω = Homk(Mam ⊗ · · · ⊗Ma1 ,∆ω).

Proposition 4.3 If δ ∈ DQm, then J•δ is a subcomplex of J•(Λ∆).

Proof. We suppose ∆δ 6= 0 since otherwise J•δ = 0. The path δ is not a cycle, so
there exists a ∈ Q1 parallel to δ, and ∆δ = Ma.

Let δ = am . . . a1, let τ = t(am)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1 be
a trajectory of duration n over δ, and let fτ ∈ Jτ . If σ is a trajectory of duration
n + 1 which is not over δ, we will prove that (dfτ )σ = 0. We already know from
Proposition 3.9 that if σ /∈ τ+, then (dfτ )σ = 0.

• If σ ∈ τ+
0 , there is nothing to prove since σ is over δ, as σ is obtained by

increasing some waiting time of τ by one.

• If σ ∈ τ+
1 , then σ is not over δ and we will show that (dfτ )σ = 0. Suppose

firstly that

σ = t(c)0, c, s(c)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1

for some arrow c such that s(c) = t(am). Let x1 ⊗ x2 ⊗ · · · ⊗ xn+1 ∈ σ∆,
we recall that

(dfτ )(x1 ⊗ x2 ⊗ · · · ⊗ xn+1) = x1fτ (x2 ⊗ x3 ⊗ · · · ⊗ xn+1)

+

n∑
1

(−1)ifτ (x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1)

+ (−1)n+1fτ (x1 ⊗ x2 ⊗ · · · ⊗ xn)xn+1.

11



We will show that each of the previous summands is zero. For the first one,
x1 ∈Mc and fτ (x2 ⊗ x3 ⊗ · · · ⊗ xn+1) ∈Ma. Hence this summand belongs
to the product McMa, which is zero because Λ∆ is a multi-extension zero
algebra.

We consider now fτ (x1⊗ · · ·⊗xixi+1⊗ · · ·⊗xn+1) for i = 1, . . . , n. Notice
that x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1 ∈ τ ′∆ where τ ′ is a trajectory over cδ,
hence τ ′ 6= τ . Then this summand is 0.

For the last summand, note that x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ τ ′∆, where τ ′ is a
trajectory over a path which last arrow is c. Note that c 6= am, since there
are no loops in Q. Hence τ ′ 6= τ and the summand is 0.

The case where σ ∈ τ+
1 is obtained from τ by adding at the beginning an

arrow c such that t(c) = s(a1) is analogous.

• If σ ∈ τ+
2 , suppose

σ = t(am)pm+1 , am, s(am)pm , · · · , a′′j , a′j , · · · , s(a2)p2 , a1, s(a1)p1

and let x1 ⊗ x2 ⊗ · · · ⊗ xn+1 ∈ σ∆.

The first summand of (dfτ )(x1⊗x2⊗· · ·⊗xn+1) is zero since x2⊗· · ·⊗xn+1

belongs to τ ′∆ for τ ′ 6= τ beacuse τ ′ is a trajectory over a path different from
δ. Then

fτ (x2 ⊗ x3 ⊗ · · · ⊗ xn+1) = 0.

The proof that the last summand is zero is analogous.

The other summands are also zero: if xi+1 ∈ Ma′′j
and xi ∈ Ma′j

, then
xi+1xi = 0 because the products of elements of the bimodules are zero in
Λ∆. Otherwise, observe that x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1 ∈ τ ′∆ where τ ′

is a trajectory over a path different from δ, then

fτ (x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1) = 0.

�

Definition 4.4 Let Λ∆ be a multi-extension zero algebra with respect to a Q-data
∆ = (A,M) and let δ ∈ DQm.

For n ≥ m, the cohomology of ∆ along δ is denoted Hnδ (∆), and it is the
cohomology of the complex of cochains J•δ .

From the above proof, we record the next result for the coboundary of J•δ .

Proposition 4.5 Let δ ∈ DQm and let τ ∈ Tn(δ). Let fτ ∈ Jτ . The coboundary
d : Jnδ → Jn+1

δ is given by

dfτ =
∑
σ∈τ+

0

(dfτ )σ.

Proof. We know from Proposition 3.9 that

dfτ =
∑
σ∈τ+

(dfτ )σ =
∑
σ∈τ+

0

(dfτ )σ +
∑
σ∈τ+

1

(dfτ )σ +
∑
σ∈τ+

2

(dfτ )σ. (4.1)

We have just shown that if δ is not a cycle, and if σ ∈ τ+
1 ∪τ

+
2 , then (dfτ )σ = 0.

�
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Definition 4.6 Let ω = am . . . a1 ∈ Qm. The bimodule along ω is

Mω = Mam ⊗As(am)
· · · ⊗As(a2)

Ma1 .

Note that Mω is an At(ω) −As(ω)-bimodule.

Lemma 4.7 Let ∆ be a Q-data, and let δ ∈ DQm. The following holds:

Hmδ (∆) = HomAt(δ)−As(δ) (Mδ,∆δ) .

In particular if a ∈ Q1,

H1
a(∆) = EndAt(a)−As(a) Ma.

Proof. The complex of cochains J•δ(Λ) begins as follows:

0→ Homk(Mam ⊗ · · · ⊗Ma1 , ∆δ)
d→

⊕
τ∈Tm+1(δ)

Homk(τ∆, ∆δ)
d→ · · ·

Observe that Tm+1(δ) = {τi}i=0,...,m+1, where τi is obtained from the trajectory with 0
total waiting time by increasing the waiting time at s(ai) by one, for i = 0, . . . ,m, and at
t(am) also by one for i = m+ 1. Hence, for i = 0 . . . ,m:

(τi)∆ = Mam ⊗ · · · ⊗Mai ⊗As(ai) ⊗Mai−1 · · · ⊗Ma1

and
(τm+1)∆ = At(am) ⊗Mam ⊗ · · · ⊗Ma1 .

Let f ∈ Homk(Mam ⊗ · · · ⊗Ma1 , ∆δ) be such that df = 0, that is (df)τi = 0 for all
i. For 0 < i < m + 1, this shows that f is As(i)-balanced, while the cases i = 0 and
i = m+ 1 prove that f is a morphism of bimodules. �

Remark 4.8 For r ≥ 0 and δ ∈ DQm, we will prove in the next section that
assuming adequate hypotheses,

Hm+r
δ (∆) = ExtrAt(δ)−As(δ) (Mδ,∆δ) .

We have proven in Proposition 4.3 that each non cycle δ provides a subcomplex
J•δ of the complex J•(Λ∆). This enables to consider their direct sum as follows.

Definition 4.9 Let Λ be a multi-extension zero algebra given by a simply laced
quiver Q and a Q-data ∆ = (A,M). The non cycle subcomplex of cochains
D•(Λ∆) of J•(Λ∆) is

Dn(Λ∆) =
⊕
δ∈DQ

Jnδ .

Remark 4.10 We already know that if ω ∈ Qm and n < m, then Tn(ω) = ∅. For
such m and n,

Dn(Λ∆) =
⊕

δ∈DQ≤n

Jnδ .

In particular D0(Λ∆) = 0. Note also that

Hn(D•(Λ∆)) =
⊕

δ∈DQ≤n

Hnδ (∆).
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We consider now the exact sequence of complexes of cochains, where Λ∆ is
omitted in the notation:

0→ D• → J• → (J/D)• → 0.

Our next purpose is to describe the cohomology of the quotient complex (J/D)•.
Let CQ be the set of cycles of Q and let

Cn =
⊕
γ∈CQ

Jnγ .

Recall that for γ ∈ CQ,

Jnγ =
⊕

τ∈Tn(γ)

Jnτ =
⊕

τ∈Tn(γ)

Homk(τ∆, ∆γ)

where ∆γ = As(γ) = At(γ). The set of paths of Q is the disjoint union of DQ and
CQ, hence at each degree there is a vector space decomposition

Jn = Dn ⊕ Cn

which provides a vector space identification between Cn and (J/D)n.

Remark 4.11

• The vector spaces {Cn}n≥0 are not in general a subcomplex of J•. Indeed,
let τ be a trajectory over a cycle γ, and let fτ ∈ Jτ . By Proposition 3.9,
dfτ ∈

⊕
σ∈τ+ Jn+1

σ , where τ+ = τ+
0 ∪ τ

+
1 ∪ τ

+
2 . Observe that a trajectory

σ ∈ τ+
1 is not anymore over a cycle since it is obtained by adding an arrow

either after the end of τ or before its beginning - recall that there are no
loops in Q. Moreover, in general (dfτ )σ is not zero: the image of fτ lies in
As(ω) = At(ω), hence the first and the last summands may be not zero.

• Notice that if σ ∈ τ+
2 , then (dfτ )σ = 0. Indeed, the proof of the last item of

Proposition 4.3 is also valid for cycles.

• On the other hand, the trajectories in τ+
0 are over the same cycle γ, since

they are obtained by increasing by one a waiting time of τ .

Let τ be a trajectory over a path ω, and let fτ ∈ Homk (τ∆, ∆ω). Recall that

dfτ =
∑
σ∈τ+

0

(dfτ )σ +
∑
σ∈τ+

1

(dfτ )σ +
∑
σ∈τ+

2

(dfτ )σ .

We have proven that the last summand is zero for multi-extension zero algebras,
from now on we will omit it.

Definition 4.12 Let γ ∈ CQm, and let τ be a trajectory over γ of duration n -
hence n ≥ m. Let

d′ : Cn → Cn+1

be the map defined by:

d′fτ =
∑
σ∈τ+

0

(dfτ )σ.
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Notice that the image of d′ is indeed contained in Cn+1 since the trajectories of τ+
0

are over the cycle γ.

Theorem 4.13 The complex of cochains (J/D)• with the induced differential d is
isomorphic to (C•, d′).

Proof. Remark 4.11 shows that through the mentioned identification between
(J/D)• and C•, the coboundary d becomes d′. �

The subcomplex D• of J• is a direct sum of subcomplexes indexed by non cycles.
For δ ∈ DQ we have defined its cohomology H•δ .

We observe that a similar situation is in force for the quotient complex of
cochains ((J/D)•, d) = (C•, d′), namely this quotient is the direct sum of sub-
complexes indexed by CQ.

Moreover the differential d′ has the same description than the one given in
Proposition 4.5 for d. This enables us to define globally the cohomology along an
arbitrary path as follows.

Definition 4.14 Let Q be a simply laced quiver with a Q-data ∆ = (A,M), and
let ω ∈ Qm. For n ≥ m, the cohomology along ω of ∆ in degree n is denoted
Hnω(∆) and is the cohomology of the following complex of cochains (K•ω, d)

0→ Homk(Mam ⊗ · · · ⊗Ma1 , ∆ω)
d→ · · ·

d→
⊕

τ∈Tn(ω)

Homk(τ∆,∆ω)
d→

⊕
τ∈Tn+1(ω)

Homk(τ∆,∆ω)
d→ · · ·

where
dfτ =

∑
σ∈τ+

0

(dfτ )σ.

Remark 4.15 Let Q be a simply laced quiver with Q-data ∆ = (A,M).

• If ω = δ is a non cycle, then (K•δ , d) = (J•δ , d) and the previous definition
agrees with Definition 4.4.

• If ω = γ is a cycle, then we have seen just before that (K•γ , d) is a direct

summand of the quotient complex ((J/D)•, d) = (C•, d′).

• If ω = x is a vertex, that is a cycle of length 0, then K•x is the usual complex
which computes the Hochschild cohomology of Ax. Hence

Hnx(∆) = HHn(Ax).

The proof of the following result is clear.

Proposition 4.16 Let Λ be a multi-extension zero algebra, with simply laced quiver
Q and Q-data ∆ = (A,M). Let J• be the complex of cochains of Lemma 3.1,
which computes HH•(Λ∆). Let D• be the non cycle subcomplex, let (J/D)• be the
quotient, and let H∗(D•) and H∗((J/D)•) be their respective cohomologies.

The following decompositions hold:

Hn(D•) =
⊕

δ∈DQ≤n

Hnδ (∆),
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Hn((J/D)•) =
⊕

γ∈CQ≤n

Hnγ (∆).

Corollary 4.17 For a multi-extension zero algebra as before, HH∗(A) is a direct
summand of H∗((J/D)•).

As particular cases of the previous proposition, we obtain the following results in
low degrees:

• H0(D•) = 0, since there are no non cycles of length less or equal to zero.

• H1(D•) =
⊕

a∈Q1
H1
a(∆) =

⊕
a∈Q1

EndAt(a)−As(a) Ma = EndA−AM, by
Lemma 4.7.

• H0((J/D)•) = ×x∈Q0
ZAx = ZA, that is the center of A. The last item of

the previous remark provides the equality.

• H1((J/D)•) =
⊕

x∈Q0
HH1(Ax) = HH1(A), since there are no loops in Q,

that is CQ≤1 = Q0, and as a consequence of the last item of the previous
remark.

Theorem 4.18 Let Λ∆ be a multi-extension zero algebra with simply laced quiver
Q and Q-data ∆ = (A,M). There is a cohomology long exact sequence as follows:

0 → 0 → HH0(Λ∆) → HH0(A) →

EndA−AM → HH1(Λ∆) → HH1(A) →⊕
δ∈DQ≤2

H2
δ(∆) → HH2(Λ∆) → HH2(A)⊕

⊕
γ∈CQ2

H2
γ(∆) →

. . .⊕
δ∈DQ≤n

Hnδ (∆) → HHn(Λ∆) → HHn(A)⊕
⊕

γ∈CQ≤n
γ /∈Q0

Hnγ (∆) →

. . .

Corollary 4.19 If Q has no cycles - that is if CQ = Q0 - the cohomology long
exact sequence is as follows:

0 → 0 → HH0(Λ∆) → HH0(A) →

EndA−AM → HH1(Λ∆) → HH1(A) →⊕
δ∈DQ≤2

H2
δ(∆) → HH2(Λ∆) → HH2(A) →

. . .⊕
δ∈DQ≤n

Hnδ (∆) → HHn(Λ∆) → HHn(A) →

. . .

In Lemma 4.7 we have computed the cohomology along δ ∈ Qm in its lowest
degree:

Hmδ = HomAt(ω)−As(ω)
(Mω,∆ω).

In particular for an arrow a,

H1
a(∆) = EndAt(a)−As(a) Ma.
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In the next section we will show that

Hr+1
a (∆) = ExtrAt(a)−As(a) (Ma,Ma) .

For longer paths, we will compute the cohomology under some additional hypothe-
ses, regardless if the path is a non cycle or a cycle.

5 Cohomology along paths

Let Q be a simply laced quiver. Let ∆ be a Q-data consisting in a set of algebras
{Ax}x∈Q0

attached to the vertices of Q, and a bimodule Ma for each arrow a ∈ Q1,
where Ma is an At(a) −As(a)-bimodule.

Our aim is to compute the cohomology H∗ω(∆) along a path ω ∈ Qm, see
Definition 4.14. In case m ≥ 2, we will need extra assumptions in order to perform
the computation. If ω is an arrow, no additional assumption is required.

Let a ∈ Q1 and n ≥ 1. A trajectory of duration n over a is τq,p = t(a)q, a, s(a)p,
where p ≥ 0 and q ≥ 0 verify q + 1 + p = n.

For simplicity, we set B = At(a), A = As(a) and M = Ma. Moreover, we
omit tensor product symbols over k between vector spaces, and we replace tensors
between elements by commas. Recall that

(τq,p)∆ = BqMAp.

Observe that (τq,p)
+
0 has two (n+ 1)-trajectories:

τq+1,p = t(a)q+1, a, s(a)p and τq,p+1 = t(a)q, a, s(a)p+1.

Note that T0(a) is empty, T1(a) has one trajectory t(a)0, a, s(a)0, while T2(a)
has two trajectories, t(a)1, a, s(a)0 and t(a)0, a, s(a)1.

These observations lead to the following explicit description of the complex
which provides the cohomology along an arrow:

Lemma 5.1 Given an arrow a, the complex of cochains (K•a, d) which computes
H∗a(∆) is:

0 −→ Homk(M,M)
d1−→ Homk(BM,M)⊕ Homk(MA,M)

d2−→
Homk(B2M,M)⊕ Homk(BMA,M)⊕ Homk(MA2,M)

d3−→ · · · dn−1−→
⊕p+q+1=nHomk(BqMAp,M)

dn−→ ⊕p+q+1=n+1Homk(BqMAp,M)
dn+1−→

· · ·

where for q + 1 + p = n and f ∈ Homk(BqMAp,M)

(dnf)τq+1,p(b1, . . . , bq+1,m, a1, . . . , ap) =
b1f(b2, . . . , bq+1,m, a1, . . . , ap)+∑q

1(−1)if(b1, . . . , bibi+1, . . . , bq+1,m, a1, . . . , ap)+
(−1)q+1f(b1, . . . , bq+1m, a1, . . . , ap)

and

(dnf)τq,p+1(b1, . . . , bq,m, a1, . . . , ap+1) =
(−1)q[f(b1, . . . , bq,ma1, . . . , ap+1)+∑p

1(−1)if(b1, . . . , bq,m, a1, . . . , aiai+1, . . . , ap+1)+
(−1)p+1f(b1, . . . , bq,m, a1, . . . , ap)ap+1].
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In particular for f ∈ Homk(M,M):

(d1f)τ1,0(b,m) = bf(m)− f(bm) and (d1f)τ0,1(m, a) = f(ma)− f(m)a.

We recall the bar resolution over an arbitrary algebra R of a left R-module X, by
free R-modules.

· · · β→ RnX
β→ Rn−1X

β→ · · · β→ R2X
β→ RX

β→ X → 0

where

β(r1, . . . , rn, x) =
∑n−1

1 (−1)i+1(r1, . . . , riri+1, . . . , rn, x)+
(−1)n+1(r1 . . . , rn−1, rnx).

Note that if X = R, then the bar resolution is also a resolution of R as R-bimodule.
The next two results have been obtained in [8], see also [9]. We recall their

proof for further use. The first one provides a canonical resolution of M as B−A-
bimodule, which is not its bar resolution over B ⊗ Aop. It is suitable in order to
obtain the complex of cochains K•a described above, which in turn will enable us to
obtain the second result.

Lemma 5.2 Let A and B be algebras, and let M be a B − A-bimodule. The
following complex C•(M) is a free-resolution of M as bimodule,

· · · →
⊕

p+q=n+2
p,q>0

BqMAp
βn→

⊕
p+q=n+1
p,q>0

BqMAp →

· · · → BMA2 ⊕B2MA
β1→ BMA

β0→M → 0

where β0(b,m, a) = bma. For n > 0, the differential βn is the sum of

βq,pn : BqMAp −→ Bq−1MAp ⊕ BqMAp−1

where p+ q = n+ 2 and

• if q ≥ 2 and p ≥ 2, then βq,pn can be written as the sum of two components

(1,0)β
q,p
n and (0,1)β

q,p
n given by

(1,0)β
q,p
n (b1, . . . , bq,m, a1, . . . , ap) =∑q−1

1 (−1)i+1(b1, . . . , bibi+1, . . . , bq,m, a1, . . . , ap)+
(−1)q+1(b1, . . . , bq−1, bqm, a1, . . . , ap)

and analogously for (0,1)β
q,p
n ,

• if p = 1 and q ≥ 2, then

βq,1n (b1, . . . , bq,m, a1) = ∑q−1
1 (−1)i+1(b1, . . . , bibi+1, . . . , bq,m, a1)+

(−1)q+1(b1, . . . , bq−1, bqm, a1),

• and if p ≥ 2 and q = 1, the definition of β1,p
n is analogous to that of βq,1n in

the previous item.

18



Proof. Consider the bar resolution of M as a left B-module, and the bar resolution
of A as A-bimodule:

· · · → BBM → BM → 0 and · · · → AAA→ AA→ 0.

Their tensor product over A provides the complex described in the statement.
In order to use the Künneth formula (see for instance [25]), we first observe that the
cycles in each degree of the bar resolution of A are projective left A-modules, since
the resolution splits as a sequence of left A-modules. Hence the tensor product of
the bar resolutions has zero homology in positive degrees, while in degree zero its
homology is M ⊗A A = M . �

Theorem 5.3 Let Q be a simply laced quiver with a Q-data ∆, and let a ∈ Q1.
The cohomology of ∆ along a is as follows:

H1+r
a (∆) = ExtrB−A(M,M).

Proof. First we apply the functor HomB−A(−,M) to the previous resolution. Let
Y and X be B −A-bimodules. The canonical isomorphism

HomB−A(BYA,X) = Homk(Y,X)

provides the complex of cochains K•a. �

As a consequence, in case there are no paths of length greater than or equal
to 2, the long exact sequence of Corollary 4.19 is simpler, as we prove in Corollary
5.4. Note that for this sort of quivers a multi-extension algebra is automatically a
multi-extension zero algebra.

Corollary 5.4 Let Q be a simply laced quiver with Q2 empty. Let

∆ = (A = ×x∈Q0Ax, M = ⊕a∈Q1Ma)

be a Q-data and let Λ∆ be the corresponding multi-extension algebra. The coho-
mology long exact sequence is:

0 −→ 0 −→ HH0(Λ∆) −→ HH0(A) −→

EndA−AM −→ HH1(Λ∆) −→ HH1(A) −→

Ext1
A−A(M,M) −→ HH2(Λ∆) −→ HH2(A) −→

. . .

Extn−1
A−A(M,M) −→ HHn(Λ∆) −→ HHn(A) −→

. . .

Proof. There are no cycles of positive length in Q, so we consider the long
exact sequence of Corollary 4.19. For n ≥ 1, we have DQ≤n = Q1. More-
over we have just proven that the cohomology along an arrow a is H1+r

a (∆) =
ExtrAt(a)−As(a)(Ma,Ma). Finally notice that

⊕
a∈Q1

ExtrAt(a)−As(a)(Ma,Ma) =

ExtrA−A(M,M). �
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Example 5.5 Let Ay[M ] be a one point extension, where Ay is an algebra and M

is a left Ay-module. By definition Ay[M ] =

(
k 0
M Ay

)
=

(
Ay M
0 k

)
. A one

point extension is a multi-extension algebra for the quiver x· a−→ ·y and the Q-data
(A,M) where Ax = k and Ma = M . Since there are no paths of length two, the
long exact sequence of Corollary 5.4 considered for Ay[M ] is in force. It coincides
with the long exact sequence obtained by D. Happel in [16]. Indeed, for a field k
we have HH0(k) = k, while HHn(k) = 0 if n > 0. The long exact sequence is then
as follows:

0 −→ 0 −→ HH0(Ay[M ]) −→ HH0(Ay)⊕ k −→

EndAy M −→ HH1(Ay[M ]) −→ HH1(Ay) −→

Ext1
Ay (M,M) −→ HH2(Ay[M ]) −→ HH2(Ay) −→

. . .

Extn−1
Ay

(M,M) −→ HHn(Ay[M ]) −→ HHn(Ay) −→

. . .

Example 5.6 Let again Q be the quiver x· a−→ ·y. Let ∆ be a Q-data. The
corresponding multi-extension algebra is the corner algebra(

Ax 0
Ma Ay

)
=

(
Ay Ma

0 Ax

)
.

The long exact sequence of cohomology has been obtained in this case independently
in [8], [22] and [15].

Next we consider a simply laced quiver Q and a path a2a1 ∈ Q2. We set
C = At(a2), B = As(a2) = At(a1) and A = As(a1).

Lemma 5.7 The complex of cochains (K•a2a1 , d) which computes H∗a2a1(∆) is as
follows:

0 −→ Homk(Ma2Ma1 , X)
d1−→

Homk(CMa2Ma1 , X)⊕ Homk(Ma2BMa1 , X)⊕ Homk(Ma2Ma1A,X)
d2−→

· · ·
dn−2−→

⊕
p+q+r+2=n Homk(CrMa2B

qMa1A
p, X)

dn−1−→⊕
p+q+r+2=n+1 Homk(CrMa2B

qMa1A
p, X)

dn−→
· · ·

Proof. Note that a trajectory τr,q,p ∈ Tn(a2a1) is

τr,q,p = t(a2)r, a2, s(a2)q, a1, s(a1)p

such that r + q + p+ 2 = n. Moreover

(τr,q,p)∆ = CrMa2B
qMa1A

p.

The stated complex equals the one of Definition 4.14 with ω = a2a1. �
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Theorem 5.8 Let Ma1 be a B − A-bimodule and let Ma2 be a C − B-bimodule,
corresponding to ω = a2a1 ∈ Q2 as previously. If TornB(Ma2 ,Ma1) = 0 for n > 0,
then

H2+r
a2a1(∆) = ExtrC−A(Mω,∆ω)

where Mω is the bimodule defined in 4.6.

Proof. Let C•(Ma2) and C•(Ma1) be the free resolutions of Lemma 5.2. In
particular, they are right and left B-projective resolutions of Ma2 and Ma1 re-
spectively. Consequently, the homology of the complex C•(Ma2) ⊗B C•(Ma1)
is Tor•B(Ma2 ,Ma1), see for instance [21, Theorem 9.3]. Our assumption insures
that this complex is a free C − A resolution of Ma2a1 . Applying the functor
HomC−A(−,∆a2a1) to it, and using the canonical isomorphism HomC−A(CY A,X) =
Homk(Y,X), yields the complex of cochains K•a2a1 . �

Theorem 5.9 Let ω = a3a2a1 ∈ Q3. Let A = As(a1), B = As(a2) C = As(a3)

and D = At(a3). If TorBn (Ma2 ,Ma1) = TorCn (Ma3 ,Ma2a1) = 0 for n > 0, then

H3+r
ω (∆) = ExtrD−A(Mω,∆ω).

Proof. The tensor product of the resolutions of Ma2 and Ma1 provides as before a
free C−A resolution of Ma2a1 . In turn, we tensorize it with the resolution of Ma3 ,
obtaining a free D − A resolution of Ma3a2a1 . Applying the appropriate functor
yields K•a3a2a1 . �

Now, we consider the general situation.

Definition 5.10 Let Q be a simply laced quiver and let ∆ be a Q-data. A path
ω = am . . . a1 of length m ≥ 2 is Tor-vanishing if

Tor
As(ai)
n (Mai ,Mai−1...a1) = 0

for i = 2, . . . ,m and for all n > 0.

The following result is a straightforward generalization of the previous theorem.

Theorem 5.11 Let Q be a simply laced quiver, let ∆ be a Q-data and let ω ∈ Qm
with m ≥ 2, be a Tor vanishing path. For r ≥ 0, the following holds

Hm+r
ω (∆) = ExtrAt(w)−As(w)

(Mω,∆ω).

Definition 5.12 A Q-data is Tor-vanishing if all the paths of length m ≥ 2 are Tor
vanishing.

Observe that if Q is a quiver without cycles and if its maximal paths of length
m ≥ 2 are Tor vanishing, then the Q-data is Tor vanishing.

Corollary 5.13 Let Q be a simply laced quiver without cycles. Let ∆ = (A,M)
be a Q-data, and suppose that the maximal paths - excepting arrows - are Tor
vanishing. Let Λ∆ be the corresponding multi-extension zero algebra. There is a
cohomology long exact sequence as follows
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0 → HH0(Λ∆) → HH0(A) →
EndAM → HH1(Λ∆) → HH1(A) →

HomA−A(M⊗A2,M)⊕ Ext1
A−A(M,M) → HH2(Λ∆) → HH2(A) →

. . .⊕
r+s=n ExtrA−A(M⊗As,M) → HHn(Λ∆) → HHn(A) →

. . .

Proof. Since CQm = ∅ for m 6= 0, we consider the long exact sequence of
Corollary 4.19. For a path ω of length m ≥ 2, Theorem 5.11 provides

Hm+r
ω (∆) = ExtrAt(w)−As(w)

(Mω,∆ω).

Observe that
⊕

ω∈QmMω = M⊗Am. Moreover if a is an arrow such that Ma 6= ∆ω,
then ExtrAt(w)−As(w)

(Mω,Ma) = 0. We infer⊕
ω∈Qm

Ext∗At(ω)−As(ω)
(Mω,∆ω) = Ext∗A−A(M⊗Am,M). (5.1)

�

In case Q has oriented cycles, we denote

(M⊗Am)D =
⊕

δ∈DQm

Mδ and (M⊗Am)C =
⊕

γ∈CQm

Mγ .

There is a decomposition

M⊗Am = (M⊗Am)D ⊕ (M⊗Am)C . (5.2)

Corollary 5.14 Let Q be a simply laced quiver and ∆ = (A,M) a Tor vanishing
Q-data, and let Λ∆ be the corresponding multi-extension zero algebra. There is a
cohomology long exact sequence as follows

0→HH0(Λ∆)→HH0(A) →
EndA−AM→HH1(Λ∆)→HH1(A) →

HomA−A((M⊗A2)D,M)⊕ Ext1A−A(M,M)→HH2(Λ∆)→HH2(A)⊕ HomA−A((M⊗A2)C , A) →
. . .⊕n

r+s=n ExtrA−A((M⊗As)D,M)→HHn(Λ∆)→HHn(A)⊕
⊕
r+s=n ExtrA−A((M⊗As)C , A)→

. . .

Corollary 5.15 Let Q be a simply laced quiver and ∆ = (A,M) a Q-data where
M is projective as A-bimodule. Let Λ∆ be the corresponding multi-extension zero
algebra. The cohomology long exact sequence is as follows

0 → HH0(Λ∆) → HH0(A) →
EndA−AM → HH1(Λ∆) → HH1(A) →

HomA−A((M⊗A2)D,M) → HH2(Λ∆) → HH2(A)⊕ HomA−A((M⊗A2)C , A) →
. . .

HomA−A((M⊗An)D,M) → HHn(Λ∆) → HHn(A)⊕ HomA−A((M⊗An)C , A) →
. . .
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Proof. Recall that A = ×x∈Q0
Ax and M = ⊕a∈Q1

Ma where Ma is an At(a) −
As(a)-bimodule. Hence M is projective as A-bimodule if and only if for every a ∈ Q1

the bimodule Ma is projective. In turn this implies that the Q-data is Tor vanishing.
The previous corollary therefore gives the long exact sequence. �

6 Multiplicative structures

The Hochschild cohomology of an algebra Λ is an associative algebra with the cup
product. Gerstenhaber in [12] proved that it is graded commutative. We recall that
if f ′ and f are cochains of degrees n′ and n of the complex of Lemma 3.1 - for
Z = Λ, their cup product f ′ ^ f is the composition

Λ⊗D(n′+n) ∼= Λ⊗Dn
′
⊗D Λ⊗Dn

f ′⊗Df
−−−−−−−−→ Λ⊗D Λ −→ Λ

where the last map is the product of Λ. The graded Leibniz rule

d(f ′ ^ f) = d(f ′) ^ f + (−1)n
′
f ′ ^ d(f)

holds, so the cup product is well defined in cohomology.
Our next purpose is to consider a cup product on the cohomology along paths

of a simply laced quiver Q provided with a data ∆.

Definition 6.1 Let ω′ and ω be paths of Q and let τ ′ and τ be trajectories over
them, of durations n′ and n respectively. Let f ′τ ′ : τ ′∆ → ∆ω′ and fτ : τ∆ → ∆ω

be cochains of (K•ω′ , d) and (K•ω, d) respectively - see Definition 4.14. Their cup
product f ′τ ′ ^ fτ is as follows:

• If ω′ and ω are not concatenable - that is if s(ω′) 6= t(ω), then f ′τ ′ ^ fτ = 0.

• If ω′ and ω are concatenable, let τ ′τ be the obvious trajectory of duration
n′ + n over the concatenated path ω′ω. The cup product f ′τ ′ ^ fτ is the
composition

(τ ′τ)∆ = τ ′∆ ⊗ τ∆
f ′
τ′⊗fτ

−−−−−−−−→ ∆ω′ ⊗∆ω −→ ∆ω′ω

where the last map is the product in the multi-extension zero algebra Λ∆.

Remark 6.2 If both ω′ and ω are not cycles, then the above product map is zero.

Proposition 6.3 The graded Leibniz rule

d(f ′ ^ f) = d(f ′) ^ f + (−1)n
′
f ′ ^ d(f)

holds, and there is a well defined cup product

Hn
′

ω′ ⊗ Hnω −→ Hn
′+n
ω′ω ,

which is zero if either ω′ and ω are not concatenable or if both of them are not
cycles.
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The proof of the proposition is the usual one, taking into account the different
cases which occur in this setting.

Remark 6.4 Let xQx be the set of cycles of Q at the vertex x. The cup product
defined above provides an algebra structure on⊕

ω∈xQx
H•ω.

Moreover HH•(Ax) is a subalgebra and its complement in the direct sum is a two-
sided ideal.

The proof of the following result is straightforward.

Theorem 6.5 Let Q be a simply laced quiver, let ∆ be a Q-data and let Λ∆ be
the corresponding multi-extension zero algebra.

• The cup product in HHn(Λ∆), restricted to the images of the maps⊕
δ∈DQ≤n

Hnδ (∆) −→ HHn(Λ∆)

of the cohomology long exact sequence of Theorem 4.18 is zero. In other words,
the cup product annihilates on cocycles which belong to D•.

• The family of maps

HHn(Λ∆) −→ HHn(A)⊕
⊕

γ∈CQ≤n
γ /∈Q0

Hnγ (∆)

of the cohomology long exact sequence of Theorem 4.18 provide a graded algebra
map.

Our next purpose is to give a formula for the connecting homomorphism

HHn(A)⊕
⊕

γ∈CQ≤n
γ /∈Q0

Hnγ (∆)
∇n

−−−−−→
⊕

δ∈DQ≤n+1

Hn+1
δ (∆)

of the cohomology long exact sequence of Theorem 4.18.
Observe that for each arrow a the identity map 1Ma is a canonical element of

H1
a(∆) = EndAt(a)−As(a) Ma. Moreover, 1M =

∑
a∈Q1

1Ma ∈ EndA−AM .

Theorem 6.6 For m ≤ n, let γ ∈ CQm and let f ∈ Hnγ (∆). The following holds:

∇n(f) = 1M ^ f + (−1)n+1f ^ 1M .

Moreover, ∇n is of degree 1 with respect to the length of the paths, that is

∇n(f) ∈
⊕

δ∈DQm+1

Hn+1
δ (∆).
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Proof. Let τ be a trajectory over γ of duration n. We consider a cocycle fτ in
Cn = (J/D)n. Note that fτ has its image contained in Ax, where x = s(γ) = t(γ).
In order to compute ∇n(fτ ), we view fτ as a cochain in Jn, thus the formula 4.1
provides the equalities

dfτ =
∑
σ∈τ+

(dfτ )σ =
∑
σ∈τ+

1

(dfτ )σ.

Recall that τ+
1 is the set of the n+ 1-trajectories

t(c)0, c, s(c)pm+1 , am, s(am)pm , · · · , s(a2)p2 , a1, s(a1)p1

where c ∈ Q1 is any arrow after ω, joint with the analogous set of trajectories
obtained for any arrow c before ω. Consequently

dfτ =
∑
c∈xQ1

(1Mc ^ fτ ) + (−1)n+1
∑
c∈Q1x

(fτ ^ 1Mc).

We know that 1M =
∑
a∈Q1

1Ma
. Moreover, if s(γ) 6= t(a), the map 1Ma

^ fτ
is zero already at the cochain level. These observations lead to the formula. �

Remark 6.7 Let Ay[M ] be a one point extension corresponding to the quiver
x· −→ ·y, see Example 5.5. For n > 0, the connecting homomorphism

∇n : HHn(Ay) −→ ExtnAy (M,M)

is as follows. If f ∈ HHn(Ay), then

∇n(f) = (−1)n+1(f ^ 1M ).

Indeed, 1M ^ f = 0 for no-concatenation reasons. Moreover, since Ax = k, the
cohomology HH•(Ax) is concentrated in degree 0, where its value is k.

Through the previous remark, we end this section by linking our work to some
of the results of [14]. In that paper, an algebra map is constructed and it is shown
that it coincides with the connecting homomorphism of the long exact sequence.
Consequently this map is the above ∇.

It is straightforward to check that the family of maps∇n for one-point extensions
given by ∇n(f) = (−1)n+1(f ^ 1M ) is indeed a graded algebra map.

Another way of considering the same fact is as follows. Let A be an algebra and
let M be a left A-module. It is well known that the Hochschild cohomology of the
A-bimodule EndkM verifies

Hn(A,EndkM) = ExtnA(M,M).

Moreover, EndkM being an A-bimodule, H•(A,EndkM) is a HH•(A)-graded
bimodule. The point is that for this specific bimodule EndkM there is a canonical
element

1M ∈ H0(A,EndkM) = EndAM.

In fact EndkM is more than an A-bimodule, it is also an A-module algebra for the
composition, that is the structural product map is A-balanced and is an A-bimodule
map. An immediate consequence of this is that Hn(A,EndkM) is an algebra, which
is canonically isomorphic to the algebra ExtnA(M,M) with the Yoneda product.
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Proposition 6.8 The morphism

HHn(A) −→ Hn(A,EndkM) = ExtnA(M,M)

given by the (left or right) action on the canonical element 1M is a morphism of
algebras.

7 Square projective algebras

In this section we focus on null-square projective algebras, see for instance [10].
A square algebra is a multi-extension algebra built on the following:

• the round trip quiver
Q = x·� ·y,

where the arrow from x to y is denoted a and the reverse one is denoted b,

• a Q-data (A,M) given by

– the algebras Ax = A, Ay = B and the corner bimodules Ma = M and
Mb = N , hence A = A×B and M = M ⊕N ,

– the bimodule maps

α : N ⊗B M → A and β : M ⊗A N → B

verifying associativity constraints, that is the following diagrams com-
mute:

M ⊗A N ⊗B M

β⊗1

��

1⊗α // M ⊗A A

��
B ⊗B M // M

N ⊗B M ⊗A N

α⊗1

��

1⊗β // N ⊗B B

��
A⊗A N // N

(7.1)

The square algebra is

(
A N
M B

)
with matrix multiplication such that if m ∈M

and n ∈ N , then(
0 0
m 0

)(
0 n
0 0

)
=

(
0 0
0 β(m⊗ n)

)
and

(
0 n
0 0

)(
0 0
m 0

)
=

(
α(n⊗m) 0

0 0

)
.

We note that an algebra Λ with a chosen idempotent e provides a square algebra

Λ =

(
eΛe eΛf
fΛe fΛf

)
, where f = 1− e.

Definition 7.1

• A square projective algebra is a square algebra such that M is a projective
A-bimodule, or, equivalently, the corner bimodules are projective.

• A null-square algebra is a square algebra such that α = β = 0.
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• A null-square projective algebra is a square algebra verifying both previous
requirements.

Proposition 7.2 Let Λ be a null-square projective algebra. For m > 0, there is a
five-term exact sequence as follows:

0 −→ HH2m(Λ) −→ HH2m(A)⊕ HomA−A
(
M⊗A2m,A

) ∇2m−→

HomA−A
(
M⊗A2m+1,M

)
−→ HH2m+1(Λ) −→ HH2m+1(A) −→ 0.

For m = 0 the exact sequence:

0 −→ HH0(Λ) −→ HH0(A)
∇0−→ EndA−A M −→ HH1(Λ) −→ HH1(A) −→ 0.

Proof. A null-square algebra is built on the round trip quiver

Q = ·� ·

where cycles are precisely the paths of even length. If n is odd, then (M⊗An)C = 0,
and (M⊗An)D = M⊗An, while if n > 0 is even, then (M⊗An)D = 0 and (M⊗An)C =
M⊗An. Corollary 5.15 applies since M is a projective bimodule. The previous
observations show that the cohomology long exact sequence of Corollary 5.15 splits
into five-term exact sequences. �

Let ∇′2m : HomA−A
(
M⊗A2m,A

)
−→ HomA−A

(
M⊗A2m+1,M

)
be the restric-

tion of ∇2m to the second direct summand.

Theorem 7.3 Let Λ be a null-square projective algebra as before. For m > 0, the
following holds:

• HH2m(Λ) = H2m(A)⊕ Ker∇′2m.

• There is a short exact sequence

0→ Coker∇′2m → H2m+1(Λ)→ H2m+1(A)→ 0.

Proof. We assert that ∇2m restricted to HH2m(A) is zero, for m > 0. Indeed,
we know that ∇2m is of degree 1 with respect to the length of paths, see Theorem
6.6. Hence

∇2m(HH2m(A)) ⊂ HH2m+1
a (∆)⊕ HH2m+1

b (∆) = Ext2m
A−A(M,M) = 0

since M is projective. Consequently, Ker∇2m = H2m(A)⊕ Ker∇′2m. This provides
the required decomposition of HH2m(Λ) since the first map of the previous five-term
exact sequence is injective.

Moreover Coker∇2m = Coker∇′2m, and the exact sequence of the statement
follows. �

Corollary 7.4 Let Λ =

(
A N
M B

)
be a null-square projective algebra.

• If n > 0 and Λ is finite dimensional, then

dim HHn(Λ) ≥ dim HHn(A) + dim HHn(B).
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• If there is a positive integer h such that M⊗Ah = 0, then for n ≥ h

HHn(Λ) = HHn(A)⊕ HHn(B).

Proof. Since A = A×B, we have HHn(A) = HHn(A)⊕ HHn(B). The previous
theorem provides the results. �

Next we will consider square projective algebras where the corner bimodules are
free bimodules of rank one, that is M = BA and N = AB - recall that we drop
tensor product symbols over k. We will first prove that the bimodule morphisms α
and β are necessarily zero, except if A = B = k. Next we will show that ∇′2m is
injective for m > 0.

Theorem 7.5 Let Λ =

(
A AB
BA B

)
be a square algebra where the corner bi-

modules are free of rank one. The algebra Λ is a null-square algebra, except if
A = B = k.

Proof. Let α : N ⊗B M → A and β : M ⊗A N → B be the bimodule maps of
the data verifying the associativity constraints (7.1) for M = BA and N = AB.
We will prove that α = β = 0. Notice that

HomA−A(N⊗BM,A) = HomA−A(AB⊗BBA,A) = HomA−A(ABA,A) = Homk(B,A).

Let α ∈ Homk(B,A) be the linear map corresponding to α through the composition
of the previous canonical isomorphisms. Similarly, let β ∈ Homk(A,B) be the
linear map corresponding to β. A simple computation shows that the associativity
constraints (7.1) are equivalent to the following for every a ∈ A and b ∈ B:

1⊗ aα(b) = β(a)b⊗ 1 ∈ BA (7.2)

1⊗ bβ(a) = α(b)a⊗ 1 ∈ AB. (7.3)

Let A′ and B′ be vector subspaces of A and B, such that A = k ⊕ A′ and
B = k ⊕ B′. For a ∈ A and b ∈ B, let a = a1 + a′ and b = b1 + b′ be the
corresponding decompositions.

The equality (7.2) for a = b = 1 gives 1⊗ α(1) = β(1)⊗ 1, then

1⊗ α(1)1 + 1⊗ α(1)′ = β(1)1 ⊗ 1 + β(1)′ ⊗ 1.

The tensors 1⊗α(1)1 and β(1)1⊗ 1 are both in k⊗k k, while 1⊗α(1)′ ∈ k⊗k A′
and β(1)′⊗ 1 ∈ B′⊗k k belong to different direct summands of BA, which implies
that they are both zero. Moreover α(1)′ = 0 = β(1)′. Consequently there is λ ∈ k
such that

α(1) = α(1)1 = λ = β(1)1 = β(1).

For all a ∈ A and b = 1, the equality (7.2) gives 1⊗ aα(1) = β(a)⊗ 1, hence

1⊗ λa = β(a)⊗ 1 (7.4)

that is
1⊗ λa1 + 1⊗ λa′ = β(a)1 ⊗ 1 + β(a)′ ⊗ 1.

If λ 6= 0, then a′ = 0 for every a ∈ A; the same computation for the other
associativity constraints provides b′ = 0 for every b ∈ B, that is A = B = k. If
λ = 0 we infer from (7.4) that β = 0; similarly α = 0. �
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Proposition 7.6 Let Λ be as in Theorem 7.5. The morphism ∇′2m is injective for
m > 0, except if A = k and B = k.

Proof. From the previous result, Λ is a null-square projective algebra. We first
pay attention to the general case where the corner projective bimodules M and N
are not necessarily free of rank one. Consider

∇′2m : HomA−A
(
M⊗A2m,A

)
→ HomA−A

(
M⊗A2m+1,M

)
and the vector space decomposition

HomA−A
(
(N ⊗B M)⊗Am, A

)
⊕ HomB−B

(
(M ⊗A N)⊗Bm, B

) ∇′2m
−−−−−−−−→

HomB−A
(
M ⊗A (N ⊗B M)⊗Am,M

)
⊕ HomA−B

(
(M ⊗A N)⊗Bm ⊗B M,N

)
.

Let [∇′2m]M and [∇′2m]N be the components of ∇′2m with values in the first
and in the second target summands. Hence

Ker∇′2m = Ker [∇′2m]M ∩ Ker [∇′2m]N .

Moreover, for (ϕ,ψ) in the source vector space, Theorem 6.6 provides

[∇′2m]M (ϕ,ψ) = 1M ⊗ ϕ− ψ ⊗ 1N .

Then
Ker [∇′2m]M = {(ϕ,ψ) | 1M ⊗ ϕ = ψ ⊗ 1N}.

In other words, let

µ : HomA−A
(
(N ⊗B M)⊗Am, A

)
→ HomB−A

(
M ⊗A (N ⊗B M)⊗Am,M

)
ν : HomB−B

(
(M ⊗A N)⊗Bm, B

)
→ HomB−A

(
M ⊗A (N ⊗B M)⊗Am,M

)
be defined by µ(ϕ) = 1M ⊗ϕ and ν(ψ) = ψ⊗ 1N . Notice that Ker [∇′2m]M is the
pullback of µ and ν.

For M = BA and N = AB there are canonical identifications:

• (N ⊗B M)⊗Am = A(BA)m

• M ⊗A (N ⊗B M)⊗Am = (BA)m+1

• HomA−A ((N ⊗B M)⊗Am, A) = Homk((BA)m−1B,A).

• HomB−A (M ⊗A (N ⊗B M)⊗Am,M) = Homk(A(BA)m−1B,BA).

For simplicity we set X = (BA)m−1. Through the previous identifications, µ
corresponds to a linear map:

µ : Homk(XB,A)→ Homk(AXB,BA)

µ(f)(a⊗ x⊗ b) = 1⊗ af(x⊗ b).

Similarly we obtain:

ν : Homk(AX,B)→ Homk(AXB,BA)

29



[ν(g)](a⊗ x⊗ b) = g(a⊗ x)b⊗ 1.

We suppose that for all a ∈ A, x ∈ X and b ∈ B

1⊗ af(x⊗ b) = g(a⊗ x)b⊗ 1

which is similar to the equality (7.2). Computing Ker [∇′2m]N leads to the analogous
result, which is similar to (7.3). Computations equal to those in the proof of
Theorem 7.5 show that f = g = 0, except when A = k and B = k. �

Corollary 7.7 LetA andB be finite dimensional algebras, and let Λ =

(
A AB
BA B

)
be the square algebra where the corner bimodules are free of rank one.

Except if A = B = k, the following hold

• HH0(Λ) = k × k,

• dim HH1(Λ) = dim HH1(A) + dim HH1(B) − (dim HH0A + dim HH0B) +
2(dimA dimB + 1),

• HH2m(Λ) = HH2m(A)⊕ HH2m(B) for m > 0,

• dim HH2m+1(Λ) = dim HH2m+1(A) + dim HH2m+1(B) +
2(dimA dimB)m(dimA dimB − 1) for m > 0.

Proof. The center of a square algebra Λ =

(
A N
M B

)
is

{(a, b) ∈ HH0(A)× HH0(B) | for all m ∈M n ∈ N, bm = ma and an = nb}.

If M = BA and N = AB, we infer HH0(Λ) = k × k.
Note that, as vector spaces, EndB−ABA = BA and EndA−B AB = AB. The

five-term exact sequence of Theorem 7.3 for m = 0 is

0→ k×k → HH0(A)⊕HH0(B)
∇0→ BA⊕AB → HH1(Λ)→ HH1(A)⊕HH1(B)→ 0.

Hence

2−dim HH0A−dim HH0B+2 dimAdimB−dim HH1(Λ)+dim HH1(A)+dim HH1(B) = 0.

The two equalities for m > 0 are a consequence of Theorem 7.3 and of Proposition
7.6. Indeed,

dim HomB−A (M ⊗A (N ⊗B M)⊗Am,M) = dim Homk(A(BA)m−1B,BA) =
(dimA dimB)m+1

dim HomA−B (N ⊗B (M ⊗A N)⊗Bm, N) = dim Homk(B(AB)m−1A,AB) =
(dimA dimB)m+1

and

dim HomA−A ((N ⊗B M)⊗Am, A) = dim Homk((BA)m−1B,A) =
(dimAdimB)m

dim HomB−B ((M ⊗A N)⊗Bm, B) = dim Homk((AB)m−1A,B) =
(dimAdimB)m.
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Since ∇′2m is injective, we obtain:

dim Coker∇′2m = 2(dimAdimB)m+1 − 2(dimAdimB)m.

�

Corollary 7.8 Let Λ be an algebra as in the previous result.

• HH2m+1(Λ) 6= 0 for all m.

• For m > 0, HH2m(Λ) = 0 if and only if HH2m(A) = 0 = HH2m(B).

Remark 7.9 Let A = kQA/I and B = kQB/J be finite dimensional algebras
where QA and QB are finite quivers, and I and J are admissible ideals - hence QA
and QB are the Gabriel’s quivers of A and B.

Let Λ =

(
A AB
BA B

)
be a square algebra where the corner bimodules are

free of rank one.
The Gabriel quiver QΛ of Λ is the disjoint union of QA and QB , with in addition

new arrows as follows: one arrow from each vertex of QA to each vertex of QB ,
and conversely. Let K be the admissible ideal of kQΛ generated by I, J , and all
the paths containing two new arrows. Then Λ = kQΛ/K.

Example 7.10 Let A = kQA and B = kQB be finite dimensional path algebras,
where QA and QB are connected quivers without oriented cycles which are not both
reduced to one vertex without arrows - that is A = B = k is not considered.

Let Q be the quiver as in the previous remark, that is Q is the disjoint union of
QA and QB , with in addition new arrows joining all the vertices of QA to all the
vertices of QB , and vice versa. Let K be the two sided ideal of kQ generated by
the paths of the form vωu where ω is a path of QA or of QB , and u and v are new
arrows. Let Λ = kQ/K. Then

• dim HH0(Λ) = 2,

• dim HH1(Λ) = dim HH1(A) + dim HH1(B) + 2 dimAdimB,

• dim HH2m(Λ) = 0, for m > 0,

• dim HH2m+1(Λ) = 2(dimAdimB)m(dimAdimB − 1), for m > 0.

Indeed, the Hochschild cohomology of a path algebra vanishes in degrees 2 and
higher.

8 Square projective algebras via Peirce quivers

The main purpose of this section is to describe square algebras Λ =

(
A N
M B

)
which have the property that

HHn(Λ) = HHn(A)⊕ HHn(B)

for n large enough.
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Recall that a system E of an algebra Λ is a finite set of complete orthogonal
idempotents - not necessarily primitive.

Let Λ be a multi-extension algebra built on a simply laced quiver with a Q-data
∆. As already mentioned, the Peirce Q0-quiver of Λ∆ is precisely Q.

In this section we will consider null-square projective algebras Λ =

(
A N
M B

)
where the projective corner bimodules will be given through systems of A and B.
Let E and F be systems of the algebras A and B, respectively. If e ∈ E and f ∈ F ,
then Bf ⊗ eA is a projective B − A-bimodule. Hence for integers fme ≥ 0, the
bimodule

M =
⊕

e∈E,f∈F
fme(Bf ⊗ eA)

is also projective. Note that M is free of rank one if and only if all the integers

fme are 1.
The proof of the following is straightforward.

Lemma 8.1 Let A and B be algebras provided with systems E and F , and let QE
and QF be their corresponding Peirce quivers.

Let M =
⊕

e∈E,f∈F fme(Bf ⊗ eA) and N =
⊕

e∈E,f∈F enf (Ae ⊗ fB) be

projective bimodules and let Λ =

(
A N
M B

)
be the corresponding null-square

projective algebra, that is the multi-extension zero algebra built on the round trip
quiver with data the algebras A and B on the vertices and the bimodules M and
N on the arrows. We set A = A×B and M = M ⊕N .

The set E ∪F is a system of Λ, and the Pierce E ∪F -quiver QE∪F of Λ is the
disjoint union of QE and QF - we view these quivers as located in horizontal up
and down plans. In addition there is a (vertical down) arrow from e to f if fme 6= 0
and a (vertical up) arrow from f to e if enf 6= 0, see Figure 1 below.

Definition 8.2 In the situation of the previous lemma, an efficient path of QE∪F
is a path of QE∪F which does not contain two successive arrows of QE , nor of QF .

Theorem 8.3 In the setting of Lemma 8.1, there exists h such that M⊗Ah = 0 if
and only if QE∪F has no efficient cycles.

Proof. We first assert that for h ≥ 2, we have M⊗Ah 6= 0 if and only if there
exists an efficient path which has h vertical arrows.

The following decomposition holds:

N ⊗B M =
⊕

e,e′∈E
f,f ′∈F

e′nf ′ fme (Ae′ ⊗ f ′B ⊗B Bf ⊗ eA) =

⊕
e,e′∈E
f,f ′∈F

e′nf ′ fme (Ae′ ⊗ f ′Bf ⊗ eA) .

Note that if the direct summand (Ae′ ⊗ f ′Bf ⊗ eA) is not zero, then there is
an efficient path from e to e′ which contains two vertical arrows, namely from e
to f and from f ′ to e′. If f 6= f ′, then there is an arrow in QB corresponding to
f ′Bf 6= 0, see Figure 1. If f = f ′, then the vertical arrows are concatenated.

Conversely, if there is an efficient path starting at a vertex e− ∈ E and ending
at a vertex e′+ of E which has two vertical arrows, then there is a direct summand
of N ⊗B M which is non zero.
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Fig. 1

Hence, N⊗BM 6= 0 if and only if there exists an efficient path starting and end-
ing at vertices of E, and containing two vertical arrows. The analogous statement
holds for M ⊗A N.

Since M ⊗A M = (N ⊗B M) ⊕ (M ⊗A N), the assertion is proved for h = 2.
For arbitrary h, the proof follows by the same type of considerations.

If there are no efficient cycles, then the length of the efficient paths is bounded,
since the number of vertical arrows is finite. Hence there exists h such that M⊗Ah =
0. Conversely, if M⊗Ah = 0 for some h, then M⊗An = 0 for all n ≥ h. However, if
there is an efficient cycle with l vertical arrows, then there are efficient paths with
rl vertical arrows for any positive integer r, and M⊗Arl 6= 0 for all positive integers
r. �

Theorem 8.4 Let A and B be algebras provided with systems E and F respec-
tively. Let M =

⊕
e∈E,f∈F fme(Bf ⊗ eA) and N =

⊕
e∈E,f∈F enf (Ae ⊗ fB)

be projective bimodules and let Λ =

(
A N
M B

)
be the corresponding null-square

projective algebra. We set A = A × B and M = M ⊕ N . Suppose there are no
efficient cycles in the E ∪ F -Peirce quiver of Λ. There exists a positive integer h
such that for n ≥ h

HHn(Λ) = HHn(A)⊕ HHn(B).

Proof. According to the previous result, there exists h such that M⊗Ah = 0, and
in this situation Corollary 7.4 provides the result. �

Example 8.5 Let A = kQA and B = kQB be path algebras, where QA and QB
are finite quivers, possibly with oriented cycles. We view these quivers as situated
in horizontal plans, up and down. A new quiver Q is obtained by adding chosen
sets of vertical up and down arrows which join vertices of QA and QB . Let K be
the two sided ideal of kQ generated by the paths containing two vertical arrows,
and let Λ = kQ/K.

Suppose there are no efficient cycles with respect to the (QA)0 ∪ (QB)0-Peirce
quiver of Λ. Equivalently, suppose there are no cycles in Q of the form δv . . . vδvδv
or v . . . vδvδv which have at least one vertical arrow, and where the v’s belong to
the set of vertical arrows and the δ’s to the set of paths of QA or of QB . Therefore
HHn(Λ) = 0 for n large enough.
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Indeed, by Theorem 8.4 there exists a positive integer h such that HHn(Λ) =
HHn(A)⊕ HHn(B) if n ≥ h. Moreover, Hochschild cohomology of a path algebra
vanishes in degrees larger or equal to 2, see e.g. [7, p. 98].
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