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Abstract

In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equa-
tions. For a given integer k ≥ 0, the discrete velocity unknowns are vector-valued polynomials
of total degree ≤ k on mesh elements and faces, while the pressure unknowns are discontinuous
polynomials of total degree ≤ k on the mesh. From the discrete unknowns, three relevant quanti-
ties are reconstructed inside each element: a velocity of total degree ≤ (k+1), a discrete advective
derivative, and a discrete divergence. These reconstructions are used to formulate the discretiza-
tions of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness
is ensured through appropriate high-order stabilization terms. We prove energy error estimates
that are advection-robust for the velocity, and show that each mesh element T of diameter hT

contributes to the discretization error with an O(hk+1
T )-term in the diffusion-dominated regime,

an O(h
k+ 1

2
T )-term in the advection-dominated regime, and scales with intermediate powers of hT

inbetween. Numerical results complete the exposition.

Keywords: Hybrid High-Order methods, Oseen equations, incompressible flows, polyhedral
meshes, advection-robust error estimates

MSC2010: 65N08, 65N30, 65N12, 76D07

1 Introduction

Since the pioneering works [2626, 3030–3333] of Cockburn, Shu and coworkers in the late 1980s, discontinuous
Galerkin (DG) methods have gained significant popularity in computational fluid mechanics, boosted
by the 1997 landmark papers [77, 88] by Bassi, Rebay and coworkers on the treatment of viscous terms.
At the roots of this success are, in particular: the possibility to handle general meshes (including, e.g.,
nonconforming interfaces) and high approximation orders; the robustness with respect to dominant
advection; the satisfaction of local balances on the computational mesh. The application of DG
methods to the discretization of incompressible flow problems has been considered in several works
starting from the early 2000s; a bibliographic sample includes [33–66, 99, 1717, 2727–2929, 3434, 3535, 4141, 5252, 5353,
5656, 5858, 6161–6363, 6565]; cf. also [4242, Chapter 6] for a pedagogical introduction.

Despite their numerous favorable features in the context of incompressible fluid mechanics, DG meth-
ods suffer from two major drawbacks, particularly when non-standard meshes are considered: first,
the number of unknowns rapidly grows as kdNT , with d denoting the space dimension and NT the
number of mesh elements; second, the inf-sup condition may not be verified, which requires to add
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pressure stabilization terms. Of course, these inconvenients can be overcome in specific cases; see,
e.g., [4242, Section 6.1.5] for a discussion on DG discretizations without pressure stabilization.

A significant contribution to the resolution of both issues was given in the 2009 paper by Cockburn,
Gopalakrishnan, and Lazarov [2424], where the authors provide a unified framework for the hybridiza-
tion of Finite Element (FE) methods for second order elliptic problems. An important side result of
this work is that discontinuous methods featuring a reduced number of globally coupled unknowns can
be devised by enforcing flux continuity through Lagrange multipliers on the mesh skeleton, leading
to the so-called Hybridizable Discontinuous Galerkin (HDG) methods. A first notable consequence
of introducing skeletal unknowns is that efficient implementations exploiting hybridization and static
condensation are possible. This leads to globally coupled problems where the number of unknowns
grows as kd−1NF , with NF denoting the number of faces. A second important consequence is that a
Fortin interpolator is available, paving the way to inf-sup stable methods for incompressible problems
on general meshes.

In their original formulation, HDG methods focused on meshes with standard element shapes, and
had in some cases lower orders of convergence than standard mixed FE methods; see Remark 33 on
this subject. Recently, a novel class of methods that overcome both limitations have been proposed
in [4040, 4444] under the name of Hybrid High-Order (HHO) methods. The relation between HDG and
HHO methods has been explored in a recent work [2121], which points out the analogies and differences
among the two frameworks. In particular, HHO-related advances include the applicability to general
polyhedral meshes in arbitrary space dimension, as well as the identification of high-order stabilizing
contributions which allow to gain up to one order of convergence with respect to classical HDG
methods. Additionally, powerful discrete functional analysis tools have been developed in the HHO
framework that make the convergence analysis using compactness techniques possible for problems
involving complex nonlinearities; see, e.g., [1414, 3636, 3737]. It has to be noted that also other recently
developed methods support polygonal meshes and high-orders. We cite here, in particular, the Virtual
Element methods (VEM) in their primal conforming [1010], mixed [1515], and primal nonconforming [22]
flavors, as well as the recently introduced M -decompositions [2222, 2323]. For a study of the relations
among HDG, HHO, and VEM, we refer the reader to [1313, 3939].

HDG, HHO and related methods have been applied to the discretization of incompressible flows; see,
e.g., [11, 1111, 1919, 2020, 4646, 5151, 5959, 6060, 6464]. In this work, we propose a novel and original study of HHO
discretizations of the Oseen problem highlighting the dependence of the error estimates on the Péclet
number when the latter takes values in [0,+∞). Notice that +∞ is excluded since, for the sake
of simplicity, we assume nonzero viscosity; we refer the reader to [3838, 4343] for the study of DG and
HHO methods for locally vanishing diffusion with advection, where this assumption is removed. It is
also worth mentioning that this type of analysis does not seem straightforward for the Navier–Stokes
problem, since error estimates typically require small data assumptions, essentially limiting the range
of Reynolds number; see, e.g., [4646], where convergence by compactness is also proved without any
small data requirement.

For a given integer k ≥ 0, the HHO method proposed here hinges on discrete velocity unknowns
that are vector-valued polynomials of total degree ≤ k on mesh elements and faces, and pressure
unknowns that are discontinuous polynomials of total degree ≤ k on the mesh. Based on these
discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity one
degree higher than the discrete unknowns; a discrete advective derivative; a discrete divergence whose
composition with the local interpolator coincides with the L2-orthogonal projection of the continuous
divergence. The use of the high-order velocity reconstruction allows one to obtain the O(hk+1)-
scaling for the viscous term typical of HHO methods. The use of the discrete advective derivative
together with a face-element upwind stabilization in the advective contribution, on the other hand,
warrants a robust behaviour in the advection-dominated regime. In particular, the contribution to the
discretization error stemming from the advective term has optimal scaling varying from O(hk+1) in

the diffusion-dominated regime to O(hk+ 1
2 ) in the advection-dominated regime. Finally, the discrete

divergence operator is designed so as to be surjective in the discrete pressure space, so that an inf-sup
condition is verified.
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The rest of the paper is organized as described hereafter. In Section 22 we formulate the continuous
problem along with the assumptions on the data. In Section 33 we establish the discrete setting (mesh,
notation, basic results). Section 44 contains the formulation of the discrete problem preceeded by the
required ingredients, the statements of the main results corresponding to Theorems 66 and 99, and
numerical examples. Section 55 contains the proofs of the main results. Finally, the flux formulation
of the discrete problem is discussed in Appendix AA.

2 Continuous problem

Let Ω ⊂ Rd, d ∈ {2, 3}, denote an open bounded connected polytopal set with Lipschitz boundary
∂Ω, f ∈ L2(Ω)d a volumetric body force, ν ∈ R∗+ the dynamic viscosity, β ∈ Lip(Ω)d a given velocity
field such that ∇·β = 0, and µ ∈ R∗+ a reaction coefficient. We consider the Oseen problem that
consists in seeking the velocity field u : Ω→ Rd and the pressure field p : Ω→ R such that

−ν∆u + (β·∇)u + µu +∇p = f in Ω, (1a)

∇·u = 0 in Ω, (1b)

u = 0 on ∂Ω, (1c)∫
Ω

p = 0. (1d)

In what follows, the coefficients ν, β, µ together with the source term f are collectively referred to
as the problem data.

Remark 1 (Reaction coefficients). The assumption µ > 0 can be relaxed, but we keep it here to
simplify some of the arguments in the analysis. We are, however, not concerned with the reaction-
dominated regime; see Remark 88. We notice, in passing, that assuming µ > 0 brings us closer to
the unsteady case, where reaction-like terms stem from the discretization of the time derivative. The
case µ = 0 is considered in the numerical examples of Section 4.74.7.

Weak formulations for problem (11) are classical. Denote by H1
0 (Ω) the space of functions that are

square-integrable on Ω along with their first weak derivatives and that vanish on ∂Ω in the sense of
traces, and by L2

0(Ω) the space of functions that are square-integrable and have zero mean value on Ω.
For any X ⊂ Ω, we denote by (·, ·)X the usual inner product of L2(X) and by ‖·‖X the corresponding
norm, and we adopt the convention that the subscript is omitted whenever X = Ω. The same
notations are used for the spaces of vector- and tensor-valued functions L2(X)d and L2(X)d×d,
respectively. Setting U := H1

0 (Ω)d and P := L2
0(Ω), a weak formulation for problem (11) reads: Find

(u, p) ∈ U × P such that
a(u,v) + b(v , p) = (f ,v) ∀v ∈ U ,

−b(u, q) = 0 ∀q ∈ P,
(2)

with bilinear forms a : U ×U → R and b : U × P → R such that

a(u,v) := ν(∇u,∇v) + ((β·∇)u,v) + µ(u,v), b(v , q) := −(∇·v , q). (3)

3 Discrete setting

We consider here polygonal or polyhedral meshes corresponding to couples Mh := (Th,Fh), where
Th is a finite collection of polygonal elements T of maximum diameter equal to h > 0, while Fh is
a finite collection of hyperplanar faces F . It is assumed henceforth that the mesh Mh matches the
geometrical requirements detailed in [4949, Definition 7.2]; see also [4848, Section 2]. For every mesh
element T ∈ Th, we denote by FT the subset of Fh containing the faces that lie on the boundary
∂T of T . For each face F ∈ FT , nTF is the (constant) unit normal vector to F pointing out of T ,
and we denote by nT the piecewise constant field on FT such that nT |F = nTF for all F ∈ FT .
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Boundary faces lying on ∂Ω and internal faces contained in Ω are collected in the sets Fb
h and F i

h,
respectively.

Our focus is on the so-called h-convergence analysis, so we consider a sequence of refined meshes
that is regular in the sense of [4848, Definition 3]. The corresponding positive regularity parameter,
uniformly bounded away from zero, is denoted by %. The mesh regularity assumption implies, among
other, that the diameter hT of a mesh element T ∈ Th is uniformly comparable to the diameter hF
of each face F ∈ FT , and that the number of faces in FT is bounded uniformly in h.

The construction underlying HHO methods hinges on projectors on local polynomial spaces. Let X
denote a mesh element or face. For a given integer l ≥ 0, we denote by Pl(X) the space spanned by
the restriction to X of d-variate polynomials of total degree ≤ l. The local L2-orthogonal projector
π0,l
X : L2(X) → Pl(X) is defined as follows: For all v ∈ L2(X), the polynomial π0,l

X v ∈ Pl(X)
satisfies

(π0,l
X v − v, w)X = 0 ∀w ∈ Pl(X). (4)

The vector version of the L2-projector, denoted by π0,l
X , is obtained applying π0,l

X component-wise.
At the global level, we denote by Pl(Th) the space of broken polynomials on Th whose restriction
to every mesh element T ∈ Th lies in Pl(T ). The corresponding global L2-orthogonal projector

π0,l
h : L2(Ω)→ Pl(Th) is such that, for all v ∈ L2(Ω),

(π0,l
h v)|T := π0,l

T v|T . (5)

Also in this case, the vector version π0,l
h is obtained applying π0,l

h component-wise. Broken polynomial
spaces are a special instance of the broken Sobolev spaces: For an integer m ≥ 0,

Hm(Th) :=
{
v ∈ L2(Ω) : v|T ∈ Hm(T ) ∀T ∈ Th

}
.

Broken Sobolev spaces will be used to formulate the regularity assumptions on the exact solution
required to derive error estimates.

Let now a mesh element T ∈ Th be given. The local elliptic projector π1,l
T : H1(T )→ Pl(T ) is defined

as follows: For all v ∈ H1(T ), the polynomial π1,l
T v ∈ Pl(T ) satisfies

(∇(π1,l
T v − v),∇w)T = 0 for all w ∈ Pl(T ) and (π1,l

T v − v, 1)T = 0. (6)

The vector version π1,l
T is again obtained applying π1,l

T element-wise. We leave it to the reader to check
that both the local L2-orthogonal and elliptic projectors are linear, onto, and idempotent (hence, they
map polynomials of degree ≤ l onto themselves).

To avoid the profileration of generic constants, throughout the rest of the paper the notation a . b
means a ≤ Cb with real number C > 0 independent of the meshsize h, of the problem data and, for
local inequalities on a mesh element or face X, also on X. The notation a ' b means a . b . a.
When useful, the dependence of the hidden constant is further specified.

On regular mesh sequences, both π0,l
T and π1,l

T have optimal approximation properties in Pl(T ), as
summarized by the following result (for a proof, see Theorems 1.1, 1.2, and Lemma 3.1 in [3737]): For
ξ ∈ {0, 1} and any s ∈ {ξ, . . . , l + 1}, it holds for all h ∈ H, all T ∈ Th, and all v ∈ Hs(T ),

|v − πξ,lT v|Hm(T ) . hs−mT |v|Hs(T ) ∀m ∈ {0, . . . , s}, (7a)

and, if s ≥ 1,

|v − πξ,lT v|Hm(FT ) . h
s−m− 1

2

T |v|Hs(T ) ∀m ∈ {0, . . . , s− 1}, (7b)

where Hm(FT ) :=
{
v ∈ L2(∂T ) : v|F ∈ Hm(F ) ∀F ∈ FT

}
is the broken Sobolev space on the

boundary of T . The hidden constants in (77) depend only on d, %, ξ, l, and s.

To close this section, we note the following local trace and inverse inequalities (cf. [4242, Lemmas 1.46
and 1.44]): For all T ∈ Th and all v ∈ Pk(T ),

‖v‖F . h
− 1

2

F ‖v‖T for all F ∈ FT and ‖∇v‖T . h−1
T ‖v‖T . (8)
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4 Discrete problem

In this section we introduce the main ingredients of the HHO construction, formulate the discrete
problem, state the main results, and provide some numerical examples.

4.1 Discrete unknowns

Let an integer k ≥ 0 be fixed. We define the following space of discrete velocity unknowns on Th,
which consist of vector-valued polynomial functions of total degree ≤ k inside each mesh element and
on each mesh face:

Uk
h :=

{
vh := ((vT )T∈Th , (vF )F∈Fh

) : vT ∈ Pk(T )d for all T ∈ Th and vF ∈ Pk(F )d for all F ∈ Fh
}
.

For all vh ∈ U
k
h, we define the broken polynomial function vh ∈ Pk(Th)d obtained by patching

element unknowns, i.e.,
vh|T := vT ∀T ∈ Th.

The global interpolator Ikh : H1(Ω)d → Uk
h is such that, for any v ∈ H1(Ω)d,

Ikhv := ((π0,k
T v|T )T∈Th , (π

0,k
F v|F )F∈Fh

).

For any mesh element T ∈ Th, we denote by Uk
T and IkT , respectively, the restrictions of Uk

h and Ikh
to T , that is

Uk
T :=

{
vT := (vT , (vF )F∈FT

) : vT ∈ Pk(T )d and vF ∈ Pk(F )d for all F ∈ FT
}

and, for any v ∈ H1(T )d,

IkTv := (π0,k
T v , (π0,k

F v|F )F∈FT
).

The HHO scheme is based on the following discrete spaces for the velocity and the pressure which
strongly incorporate, respectively, the homogeneous boundary condition on the velocity and the
constraint that the pressure has zero mean value on Ω:

Uk
h,0 :=

{
vh ∈ U

k
h : vF = 0 ∀F ∈ Fb

h

}
, P kh := Pk(Th) ∩ P.

4.2 Viscous bilinear form

Let a mesh element T ∈ Th be fixed. We define the local velocity reconstruction operator rk+1
T :

Uk
T → Pk+1(T )d such that, for a given vT ∈ U

k
T , rk+1

T vT satisfies

(∇rk+1
T vT ,∇w)T = −(vT ,∆w)T +

∑
F∈FT

(vF ,∇wnTF )F ∀w ∈ Pk+1(T )d,∫
T

rk+1
T vT =

∫
T

vT .

(9)

The above definition can be justified observing that, for all v ∈ H1(T )d,

rk+1
T IkTv = π1,k+1

T v , (10)

as can be easily verified writing (99) with vT replaced by IkTv and using the definition (66) of the
elliptic projector with l = k + 1 in the left-hand side and (44) of the L2-orthogonal projectors on T
and its faces in the right-hand side.
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The discrete viscous bilinear form aν,h : Uk
h ×U

k
h → R is assembled element-wise as follows:

aν,h(wh,vh) =
∑
T∈Th

aν,T (wT ,vT ) (11a)

where, for any T ∈ Th, the local bilinear form aν,T : Uk
T ×U

k
T → R is such that

aν,T (wT ,vT ) := ν(∇rk+1
T wT ,∇rk+1

T vT )T + sν,T (wT ,vT ). (11b)

The first contribution in the right-hand side is responsible for consistency, whereas the second is a
stabilization bilinear form which we can take such that

sν,T (wT ,vT ) :=
∑
F∈FT

ν

hF
((δkTF − δ

k
T )wT , (δ

k
TF − δ

k
T )vT )F (11c)

where, for any vT ∈ Uk
T , we have introduced the difference operators such that for any vT ∈

Uk
T ,

(δkTvT , (δ
k
TFvT )F∈FT

) := IkTr
k+1
T vT − vT ∈ U

k
T . (12)

Using (1010) together with the linearity and idempotency of the L2-orthogonal projectors on mesh
elements and faces, it can be proved that the following polynomial consistency property holds (see,
e.g., [4848, Section 3.1.4] for the details): For all w ∈ Pk+1(T )d,

(δkT I
k
Tw, (δ

k
TF I

k
Tw)F∈FT

) = 0 ∈ Uk
T . (13)

Remark 2 (Viscous stabilization bilinear form). More general viscous stabilization bilinear forms can
be considered. Following [1313, Section 5.3], the following set of sufficient design conditions on sν,T
ensure that the required stability and consistency properties for aν,h hold:

(S1) Symmetry and positivity. sν,T is symmetric and positive semidefinite.

(S2) Stability and boundedness. It holds for all vT ∈ U
k
T ,

ν‖vT ‖21,T ' aν,T (vT ,vT ) where ‖vT ‖21,T := ‖∇vT ‖2T +
∑
F∈FT

h−1
F ‖vF − vT ‖

2
F .

Summing over T ∈ Th, this implies in particular that it holds, for all vh ∈ U
k
h,

ν‖vh‖21,h ' aν,h(vh,vh) where ‖vh‖21,h :=
∑
T∈Th

‖vT ‖21,T . (14)

(S3) Polynomial consistency. For all w ∈ Pk+1(T )d and all vT ∈ U
k
T , it holds that

sν,T (IkTw,vT ) = 0.

The stabilization bilinear form (11c11c) is clearly symmetric and positive semidefinite, and thus it satisfies
(S1). A proof of (S2) can be found in [4444, Lemma 4], where the scalar case is considered. Finally,
(S3) is an immediate consequence of (1313). To close this remark, we note the following important
consequence of (S1)–(S3): For any w ∈ Hk+2(T ),

sν,T (IkTw, I
k
Tw)

1
2 . νhk+1

T |w|Hk+2(T ). (15)

Remark 3 (Comparison with the LDG-H stabilization). The extension to the vector case of the
LDG-H stabilization originally introduced in [1818, 2525] for scalar diffusion problems reads

sldg
ν,T (wT ,vT ) =

∑
F∈FT

ην(wF −wT ,vF − vT )F ,

where η > 0 is a user-defined stabilization parameter. The main difference with respect to the HHO
stabilization defined by (11c11c) is that sldg

ν,T does not satisfy property (S3). In particular, when using

η = h−1
F , the consistency estimate (1515) modifies to

sldg
ν,T (IkTw, I

k
Tw)

1
2 . νhkT |w|Hk+1(T ).

As a result, up to one order of convergence is lost in the error estimate. We refer to [2121] for further
details including a discussion on possible fixes.
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4.3 Advection-reaction bilinear form

Let a mesh element T ∈ Th be fixed and set, for the sake of brevity,

βTF := β|F ·nTF for all F ∈ FT .

We define the local advective derivative reconstruction Gk
β,T : Uk

T → Pk(T )d such that, for all

vT ∈ U
k
T and all w ∈ Pk(T )d,

(Gk
β,TvT ,w)T = ((β·∇)vT ,w)T +

∑
F∈FT

(βTF (vF − vT ),w)F . (16)

The global advection-reaction bilinear form aβ,µ,h : Uk
h × U

k
h → R is assembled element-wise as

follows:
aβ,µ,h(wh,vh) :=

∑
T∈Th

aβ,µ,T (wT ,vT ) (17a)

where, for all T ∈ Th, the local bilinear form aβ,µ,T : Uk
T ×U

k
T → R is such that

aβ,µ,T (wT ,vT ) := −(wT ,G
k
β,TvT )T + µ(wT ,vT )T + s−β,T (wT ,vT ). (17b)

Here, letting ξ± := |ξ|±ξ
2 for any ξ ∈ R, we have set

s±β,T (wT ,vT ) :=
∑
F∈FT

(β±TF (wF −wT ),vF − vT )F . (17c)

Remark 4 (Reformulation of the advective-reactive bilinear form). It can be checked using the defini-
tion (1616) of Gk

β,T , the regularity of β, the single-valuedness of interface unknowns, and the strongly

enforced boundary condition that it holds, for all wh,vh ∈ U
k
h,0,

aβ,µ,h(wh,vh) =
∑
T∈Th

(
(Gk

β,TwT ,vT )T + µ(wT ,vT )T + s+
β,T (wT ,vT )

)
. (18)

Summing (17a17a) and (1818) and dividing by two, we arrive at the following equivalent expression:

aβ,µ,h(wh,vh) =
∑
T∈Th

(
1

2
(Gk

β,TwT ,vT )T −
1

2
(wT ,G

k
β,TvT )T

)
+
∑
T∈Th

µ(wT ,vT )T

+
∑
T∈Th

∑
F∈FT

(
|βTF |

2
(wF −wT ),vF − vT )F .

(19)

This reformulation of aβ,µ,h shows that (i) the consistent contribution in the advective term, cor-
responding to the first addend in the right-hand side of (1919), is skew-symmetric. As a result, it
does not contribute to the global kinetic energy balance obtained setting vh = uh in (31a31a) below;
(ii) the upwind stabilization can in fact be interpreted as a least-square penalization of face-element
differences. A similar interpretation in the context of DG methods was discussed in [1616].

Remark 5 (Advective stabilization bilinear form). Following [3838, Section 4.2], in (17b17b) we can consider
the following more general stabilization bilinear form:

s−β,T (wT ,vT ) =
∑
F∈FT

(
ν

hF
A−(PeTF )(wF −wT ),vF − vT )F ,

where, for all T ∈ Th and all F ∈ FT , the local face Péclet number is such that

PeTF :=
βTFhT
ν

, (20)

while the function A− : R → R is such that A−(s) = 1
2 (|A|(s)− s) with |A| : R → R matching the

following sufficient design conditions:
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(A1) Lipschitz continuity, positivity, and symmetry. |A| is a Lipschitz-continuous function such that
|A|(0) = 0 and, for all s ∈ R, |A|(s) ≥ 0 and |A|(−s) = |A|(s).

(A2) Growth. There exists CA ≥ 0 such that |A|(s) ≥ CA|s| for all |s| ≥ 1.

Besides the upwind stabilization (17c17c), notable examples of stabilizations that match the above design
conditions include the locally upwinded θ-scheme and the Scharfetter–Gummel scheme.

4.4 Velocity-pressure coupling

Let a mesh element T ∈ Th be fixed, and define the discrete divergence operator Dk
T : Uk

T → Pk(T )

such that, for all vT ∈ U
k
T and all q ∈ Pk(T ),

(Dk
TvT , q)T := −(vT ,∇q)T +

∑
F∈FT

(vF ·nTF , q)F . (21)

For any T ∈ Th and any v ∈ H1(T )d, writing (2121) for vT = IkTv and using the definitions (44) of the
L2-orthogonal projectors on T and its faces, we infer that

Dk
T I

k
Tv = π0,k

T (∇·v). (22)

We define the velocity-pressure coupling bilinear form bh : Uk
h × P kh → R such that

bh(vh, qh) := −
∑
T∈Th

(Dk
TvT , qh)T . (23)

4.5 Reference quantities, Péclet numbers, and discrete norms

For any mesh element T ∈ Th, we define the following local reference velocity and time:

βref,T := ‖β‖L∞(T )d , τref,T := max(µ,Lβ,T )−1 with Lβ,T := max
1≤i≤d

‖∇βi‖L∞(T )d , (24)

as well as the following local Péclet number (see (2020) for the definition of PeTF ):

PeT := max
F∈FT

‖PeTF ‖L∞(F ). (25)

In the discussion, we will also need the following global reference time τref,h and Péclet number
Peh:

τref,h := min
T∈Th

τref,T , Peh := max
T∈Th

PeT . (26)

We equip the discrete pressure space P kh with the L2-norm and the discrete velocity space Uk
h,0 with

the following energy norm:

‖vh‖2U ,h := ‖vh‖2ν,h + ‖vh‖2β,µ,h +
∑
T∈Th

hTβ
−1
ref,T ‖G

k
β,TvT ‖2T , (27)

where the summand in the last term is taken only if βref,T 6= 0 and we have set

‖vh‖2ν,h := aν,h(vh,vh) and ‖vh‖2β,µ,h :=
∑
T∈Th

(
1

2

∑
F∈FT

‖|βTF |
1
2 (vF − vT )‖2F + τ−1

ref,T ‖vT ‖
2
T

)
.

(28)
Given a linear functional f on Uk

h,0, its dual norm is given by

‖f‖U∗,h := sup
vh∈Uk

h,0\{0}

|〈f,vh〉|
‖vh‖U ,h

. (29)
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4.6 Discrete problem and main results

Defining the diffusion-advection-reaction bilinear form

ah := aν,h + aβ,µ,h, (30)

with aν,h defined by (1111) and aβ,µ,h by (1717), the HHO scheme for problem (11) reads: Find (uh, ph) ∈
Uk
h,0 × P kh such that

ah(uh,vh) + bh(vh, ph) = (f ,vh) ∀vh ∈ U
k
h,0, (31a)

−bh(uh, qh) = 0 ∀qh ∈ P kh . (31b)

In the rest of this section, we state and comment the main results of the analysis, whose proofs are
postponed to Section 55. The well-posedness of problem (3131) is studied in the following theorem.

Theorem 6 (Well-posedness). The following holds:

(i) Inf-sup condition on ah. Recalling the definition (2424) of the reference velocity and of the reference
time, and assuming for all T ∈ Th that

hT
βref,T τref,T

≥ 1 (32)

it holds for all vh ∈ U
k
h,0,

Ca‖vh‖U ,h . sup
wh∈Uk

h,0\{0}

ah(vh,wh)

‖wh‖U ,h
, Ca := min

T∈Th
(1, τref,Tµ) . (33)

(ii) Inf-sup condition on bh. For all qh ∈ P kh , it holds that

Cb‖qh‖ . sup
vh∈Uk

h,0\{0}

bh(vh, qh)

‖vh‖U ,h
, Cb :=

[
ν(1 + Peh) + τ−1

ref,h

]− 1
2

. (34)

(iii) Continuity of ah. It holds for all wh,vh ∈ U
k
h,0,

|ah(wh,vh)| . ‖wh‖U ,h‖vh‖U ,h. (35)

As a consequence, problem (3131) is well-posed and the following a priori bounds hold:

‖uh‖U ,h .
1

Ca
ν−

1
2 ‖f ‖, ‖ph‖ .

1

Cb

(
1 +

1

Ca

)
ν−

1
2 ‖f ‖. (36)

Proof. See Section 5.15.1.

Remark 7 (A priori estimate on the pressure). The fact that the multiplicative constant in the a
priori bound (3636) for the pressure depends on the the inf-sup constant Cb (cf. (3434)), and that the
latter depends in turn on the global Péclet number shows that the control on the pressure is not
robust with respect to dominant advection (formally corresponding to Peh → +∞).

Remark 8 (Condition (3232)). Condition (3232) can be rewritten more explicitly as

hTLβ,T
βref,T

≥ 1 and DaT :=
hTµ

βref,T
≥ 1. (37)

The first condition in (3737) stipulates that the meshsize resolves the spatial variations of the advective
velocity. The quantity DaT is a local Damköhler number which can be interpreted as the ratio of
local advective and reactive time scales. The second condition in (3737) therefore assumes that we are
not concerned with the reaction-dominated regime.
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We next investigate the convergence of the method. We measure the error as the difference between
the discrete solution and the interpolate of the exact solution defined as

(ûh, p̂h) := (Ikhu, π
0,k
h p) ∈ Uk

h,0 × P kh .

Upon observing that, as a consequence of (2222), bh(ûh, qh) = −(π0,k
h (∇·u), qh) = −(∇·u, qh) = 0, it

is a simple matter to check that the discretization error

(eh, εh) := (uh, ph)− (ûh, p̂h)

solves the following problem:

ah(eh,vh) + bh(vh, εh) = 〈R(u, p),vh〉 ∀vh ∈ U
k
h,0,

−bh(eh, qh) = 0 ∀qh ∈ P kh ,
(38)

where R(u, p) is the residual linear functional on Uk
h,0 such that, for all vh ∈ U

k
h,0,

〈R(u, p),vh〉 := (f ,vh)− ah(ûh,vh)− bh(vh, p̂h). (39)

Theorem 9 (Error estimates and convergence). Denote by (u, p) ∈ U×P and by (uh, ph) ∈ Uk
h,0×P kh

the unique solutions of the weak (22) and discrete (3131) problems, respectively. Then, recalling the
notation of Theorem 66, the following abstract error estimates hold:

‖eh‖U ,h .
1

Ca
‖R(u, p)‖U∗,h, ‖εh‖ .

1

Cb

(
1 +

1

Ca

)
‖R(u, p)‖U∗,h. (40)

Moreover, assuming the additional regularity u ∈ Hk+2(Th) and p ∈ H1(Ω)∩Hk+1(Th), it holds that

‖R(u, p)‖U∗,h .
∑
T∈Th

(
h

2(k+1)
T N1,T + min(1,PeT )h2k+1

T N2,T

) 1
2

, (41)

where, for the sake of brevity, we have defined for all T ∈ Th the following bounded quantities:

N1,T := ν|u|2Hk+2(T )d + ν−1|p|2Hk+1(T ), N2,T := βref,T |u|2Hk+1(T )d .

Proof. See Section 5.25.2.

Remark 10 (Convergence rate). Using the local Péclet number in (4141) allows us to establish an esti-
mate on ‖R(u, p)‖U∗,h which locally adjusts to the various regimes of (11). In mesh elements where

diffusion dominates so that PeT ≤ hT , the contribution to the right-hand side of (11) is O(h
2(k+1)
T ).

In mesh elements where advection dominates so that PeT ≥ 1, on the other hand, the contribution
is O(h2k+1

T ). The transition region, where PeT is between hT and 1, corresponds to intermediate or-
ders of convergence. Notice also that the viscous contribution exhibits the superconvergent behavior

O(h
2(k+1)
T ) typical of HHO methods, see [4444]. As a result, the balancing with the advective contribu-

tion is slightly different with respect to, e.g., the DG method of [4343], where the viscous contribution
scales as O(h2k

T ).

We conclude observing that the error estimate on the velocity obtained plugging (4141) into the first
estimate in (4040) is fully robust in the dominant advection regime. On the other hand, this is not
the case for the pressure, since the corresponding error estimate in (4040) involves the multiplicative
constant C−1

b , which explodes for large Péclet numbers; see also Remark 77.

Remark 11 (Static condensation). The size of the linear system corresponding to the discrete prob-
lem (3131) can be significantly reduced by resorting to static condensation. Following the procedure
hinted to in [11] and detailed in [4545, Section 6.2], it can be shown that the only globally coupled
variables are the face unknowns for the velocity and the mean value of the pressure in each mesh
element. As a result, after statically condensing the other discrete unknowns, the size of the matrix
in the left-hand side of the linear system is, denoting by N i

F the number of internal faces and by NT
the number of mesh elements, (

k + d− 1

k

)
N i
F +NT .

10



Figure 1: Triangular and hexagonal meshes.

4.7 Numerical examples

In order to confirm the error estimates of Theorem 99, we use the well-known exact solution due
to Kovasznay [5757], which we adapt here to the Oseen setting using the analytical expression of
the velocity for the advection field β. For a given value Pe ∈ R∗+ of the Péclet number, setting

λ := Pe−
√

Pe2 + 4π2, we take

uλ(x) :=
(
1− exp(λx) cos(2πy), λ2π exp(λx) sin(2πy)

)
, pλ(x) := p− 1

2 exp(2λx),

with ν := (2Pe)−1, β := uλ, µ := 0, and p chosen such that (pλ, 1) = 0. The computational
domain is the square Ω = (−0.5, 1.5)× (0, 2), approximated with refined families of triangular and
(predominantly) hexagonal meshes; see Figure 11. The former correspond to the mesh family mesh1
of the FVCA5 benchmark [5454], whereas the latter is taken from [4747].

In Figures 22 and 33 we plot the errors ‖eh‖U ,h and ‖εh‖ estimated in Theorem 99 as functions of the
meshsize h for polynomial degrees k ranging from 0 to 3. In all the cases, the errors are normalized
using the corresponding norm of the interpolate of the exact solution on a fine mesh with k = 3. The
estimated asymptotic convergence rates are summarized in Tables 11 and 22, respectively, where we
also add the results for ‖eh‖, the L2-norm of the error on the velocity. From Figure 22 and Table 11, we
see that the estimated orders of convergence are almost perfectly matched for the energy norm of the
velocity error ‖eh‖U ,h, with convergence in hk+1 for Pe = 0.01, hk+ 1

2 for Pe = 10000, and intermediate
powers inbetween. Similar considerations hold for the pressure error ‖εh‖ for Pe = 0.01 and Pe = 1,
whereas higher convergence rates than expected are observed for Pe = 10000. This phenomenon
will be further investigated in future works. The L2-norm of the velocity error, on the other hand,
exhibits convergence in hk+2, which corresponds to the classical supercloseness behaviour for HHO
methods; see, e.g., [4444, Theorem 10]. Similar considerations hold for the hexagonal mesh sequence
(see Figure 33 and Table 22) where, however, a slight degradation of the order of convergence for the
energy norm of the velocity is observed already for the smallest value of the Péclet number.

5 Proofs

In this section we prove the main results stated in Section 4.64.6.

5.1 Well-posedness

Proof of Theorem 66. (i) Inf-sup condition on ah. Let vh ∈ U
k
h,0. We begin by observing that

‖vh‖2ν,h = aν,h(vh,vh) and Ca‖vh‖2β,µ,h ≤ aβ,µ,h(vh,vh),

where we have used (1414) to obtain the first inequality and we have written (1919) for wh = vh and used
the definition (2424) of the reference time to obtain the second. Hence, denoting by $a the supremum
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Figure 2: Velocity error (left) and pressure error (right) versus meshsize h on the triangular mesh sequence
for Pe ∈ {10−2, 1, 104}.

Table 1: Estimated asymptotic orders of convergence of the relative errors on the triangular mesh sequence.

Pe = 0.01 Pe = 1 Pe = 10000

‖eh‖U ,h ‖eh‖ ‖εh‖ ‖eh‖U ,h ‖eh‖ ‖εh‖ ‖eh‖U ,h ‖eh‖ ‖εh‖
k = 0 0.96 1.86 1.07 0.82 1.65 1.11 0.48 0.77 1.76
k = 1 1.91 3.02 1.94 1.83 2.71 1.96 1.49 1.79 1.64
k = 2 2.94 3.97 2.94 2.78 3.64 2.97 2.49 2.96 2.84
k = 3 3.93 4.94 3.98 3.75 4.59 3.95 3.49 3.97 3.94
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(e) ‖eh‖U ,h v. h (Pe = 10000)
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Figure 3: Velocity error (left) and pressure error (right) versus meshsize h on the hexagonal mesh sequence
for Pe ∈ {10−2, 1, 104}.

Table 2: Estimated asymptotic orders of convergence of the relative errors on the hexagonal mesh sequence.

Pe = 0.01 Pe = 1 Pe = 10000

‖eh‖U ,h ‖eh‖ ‖εh‖ ‖eh‖U ,h ‖eh‖ ‖εh‖ ‖eh‖U ,h ‖eh‖ ‖εh‖
k = 0 0.80 1.42 0.94 0.60 1.29 0.85 0.50 0.69 0.60
k = 1 1.74 2.81 2.20 1.49 2.50 1.77 1.50 2.52 2.42
k = 2 2.84 3.89 2.96 2.45 3.34 2.84 2.51 3.59 4.15
k = 3 3.59 4.57 3.74 3.37 4.20 3.52 3.51 4.67 4.44
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in the right-hand side of (3333) and observing that C−1
a ≥ 1, we have that

‖vh‖2ν,h + ‖vh‖2β,µ,h ≤ C−1
a ah(vh,vh) ≤ C−1

a $a‖vh‖U ,h. (42)

To obtain the inf-sup condition (3333) on ah, it only remains to bound the last term in the definition
(2727) of ‖·‖U ,h. To this end, following [5555], we let wh ∈ U

k
h,0 be such that

wT = hTβ
−1
ref,TG

k
β,TvT for all T ∈ Th and wF = 0 for all F ∈ Fh,

and observe that, expanding ah and aβ,µ,h according to (3030) and (1818), respectively, we have that∑
T∈Th

hFβ
−1
ref,T ‖G

k
β,TvT ‖2T = ah(vh,wh)− aν,h(vh,wh)− µ(vh,wh)−

∑
T∈Th

s+
β,T (vT ,wT )

=: T1 + T2 + T3 + T4.

(43)

For the first term, it is readily inferred that

|T1| ≤ $a‖wh‖U ,h.

Recalling that aν,h is symmetric, and using the definition (2828) of the ‖·‖ν,h-norm, the Cauchy–Schwarz
inequality readily yields for the second term

|T2| ≤ ‖vh‖ν,h‖wh‖ν,h ≤ ‖vh‖ν,h‖wh‖U ,h,

where we have used the definition (2727) of the ‖·‖U ,h-norm to infer the last bound. Using again the
Cauchy–Schwarz inequality together with the definition (2424) of τref,T and the fact that β+

TF ≤ |βTF |,
we have for the third and the fourth terms

|T3|+ |T4| . ‖vh‖β,µ,h‖wh‖β,µ,h ≤ ‖vh‖β,µ,h‖wh‖U ,h.

Plugging the above bounds into (4343), and using the fact that ‖wh‖U ,h . ‖vh‖U ,h (see [3838, Lemma
14]), we arrive at∑

T∈Th

hTβ
−1
ref,T ‖G

k
β,TvT ‖2T . $a‖vh‖U ,h +

(
‖vh‖2ν,h + ‖vh‖2β,µ,h

) 1
2 ‖vh‖U ,h . $a‖vh‖U ,h, (44)

where the conclusion follows using (4242) to bound the terms in parentheses. Summing (4242) and (4444)
concludes the proof.

(ii) Inf-sup condition on bh. Let qh ∈ P kh ⊂ P . From the surjectivity of the continuous divergence
operator from U to P , we infer the existence of vqh ∈ U such that −∇·vqh = qh and ‖v‖H1(Ω)d . ‖q‖,
with hidden constant only depending on Ω. Using the above fact together with the definition (55) of
the global L2-orthogonal projector, the commuting property (2222) of Dk

T , and the definition (2323) of
bh, we infer that

‖qh‖2 = −(∇·vqh , qh) = −(π0,k
h (∇·vqh), qh) = bh(Ikhvqh , qh). (45)

Hence, denoting by $b the supremum in the right-hand side of (3434), we can write

‖qh‖2 ≤ $b‖Ikhvqh‖U ,h.

The conclusion follows observing that

‖Ikhvqh‖U ,h . C−1
b ‖I

k
hvqh‖1,h . C−1

b ‖vqh‖H1(Ω)d . C−1
b ‖qh‖,

where the first inequality follows from (4848) below, while for the second we have used the following
continuity property for Ikh, which can be inferred from the continuity properties of L2-projectors
proved in [3636, Lemma 3.2]: For all v ∈ U , ‖Ikhv‖1,h . ‖v‖H1(Ω)d . Notice that the latter property

together with (4545) can be summarized saying that Ikh is a Fortin interpolator.
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(iii) Continuity of ah. Let wh,vh ∈ U
k
h,0. A Cauchy–Schwarz inequality on aν,h readily yields

|aν,h(wh,vh)| ≤ ‖wh‖ν,h‖vh‖ν,h. (46)

Let now a mesh element T ∈ Th be fixed. We proceed to bound the terms in the right-hand side
of the definition (17b17b) of aβ,µ,T . Using the Cauchy–Schwarz inequality, multiplying and dividing by(
βref,T τref,T

hT

) 1
2 ≤ 1 (see (3232)), and rearranging the factors, we have for the first term

|(wT ,G
k
β,TvT )T | ≤

(
βref,T τref,T

hT

) 1
2

τ
− 1

2

ref,T ‖wT ‖T h
1
2

Tβ
− 1

2

ref,T ‖G
k
β,Tvh‖T

≤ τ−
1
2

ref,T ‖wT ‖T h
1
2

T β
− 1

2

ref,T ‖G
k
β,Tvh‖T .

For the second term, the Cauchy–Schwarz inequality followed by the definition (2424) of the reference
time τref,T give

|µ(wT ,vT )T | ≤ µ
1
2 ‖wT ‖T µ

1
2 ‖vT ‖T ≤ τ

− 1
2

ref,T ‖wT ‖T τ
− 1

2

ref,T ‖vT ‖T .

Finally, using again the Cauchy–Schwarz inequality together with the fact that β−TF ≤ |βTF |, we have
for the third term

|s−β,T (wT ,vT )| .

(
1

2

∑
F∈FT

‖|βTF |
1
2 (wF −wT )‖2F

) 1
2
(

1

2

∑
F∈FT

‖|βTF |
1
2 (vF − vT )‖2F

) 1
2

.

Plugging the above estimates into the expression (1717) of aβ,µ,h and using a discrete Cauchy–Schwarz
inequality gives

|aβ,µ,h(wh,vh)| . ‖wh‖β,µ,h‖vh‖β,µ,h. (47)

Observing that
|ah(wh,vh)| ≤ |aν,h(wh,vh)|+ |aβ,µ,h(wh,vh)|

and using (4646) and (4747) to bound the terms in the right-hand side, (3535) follows.

(iv) Well-posedness and a priori bounds. Denote by f the linear functional on Uk
h,0 such that 〈f,vh〉 =

(f ,vh) for all vh ∈ U
k
h,0. The well-posedness of problem (3131) with a priori bounds as in (3636) but

with ν−
1
2 ‖f ‖ replaced by ‖f‖U∗,h follows from an application of [5050, Theorem 2.34] after observing

that the second condition in Eq. (2.28) therein is a consequence of the first in a finite-dimensional
setting; see also [1212, Theorem 3.4.5] for the corresponding algebraic result.

The estimate ‖f‖U∗,h . ν−
1
2 ‖f ‖ that allows one to write (3636) is proved bounding the argument of

the supremum in the definition (2929) of the dual norm as follows:

〈f,vh〉 = (f ,vh) ≤ ‖f ‖ ‖vh‖ . ‖f ‖ ‖vh‖1,h . ‖f ‖ ν− 1
2 ‖vh‖ν,h . ‖f ‖ ν− 1

2 ‖vh‖U ,h,

where we have used the Cauchy–Schwarz inequality in the first bound, the discrete Poincaré inequality
for HHO spaces proved in [3636, Proposition 5.4] in the second bound, the norm equivalence (1414) in
the third bound, and the definition (2727) of the ‖·‖U ,h-norm to conclude.

The following proposition was used in point (ii) of the above proof.

Proposition 12 (Equivalence of global norms). For all vh ∈ U
k
h,0 it holds with Cb as in (3434):

ν
1
2 ‖vh‖1,h . ‖vh‖U ,h . C−1

b ‖vh‖1,h. (48)

Proof. Let vh = ((vT )T∈Th , (vF )F∈Fh

)
∈ Uk

h,0. To prove the first inequality in (4848), it suffices to use
(1414) followed by (2727) to infer

ν
1
2 ‖vh‖1,h . ‖vh‖ν,h ≤ ‖vh‖U ,h.
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To prove the second inequality in (4848), we estimate the terms that compose the ‖·‖U ,h-norm; see
(2727). We start by observing that, using again (1414), it holds

‖vh‖2ν,h . ν‖vh‖21,h. (49)

Let us bound the second term in the right-hand side of (2727). By definition (2525) of the local Péclet
number PeT , it is readily inferred for all T ∈ Th that

1

2

∑
F∈FT

‖|βTF |
1
2 (vF − vT )‖2F ≤

1

2
νPeT

∑
F∈FT

h−1
F ‖vF − vT ‖

2
F . νPeT ‖vT ‖21,T .

Summing over T ∈ Th and recalling (1414), we conclude that

1

2

∑
T∈Th

∑
F∈FT

‖|βTF |
1
2 (vF − vT )‖2F . νPeh‖vT ‖21,h.

On the other hand, using the definition (2626) of the global reference time together with the Poincaré
inequality for HHO spaces proved in [3636, Proposition 5.4] yields∑

T∈Th

τ−1
ref,T ‖vT ‖

2
T . τ−1

ref,h‖vh‖
2
1,h.

From the above relations we get the following bound for the second term in the right-hand side of
(2727):

‖vh‖2β,µ,h .
(
νPeh + τ−1

ref,h

)
‖vh‖21,h. (50)

It only remains to bound the last term in the right-hand side of (2727). Let now T ∈ Th. Making
w = Gk

β,TvT in the definition (1616) ofGk
β,TvT and using the Hölder and Cauchy–Schwarz inequalities,

it is inferred that

‖Gk
β,TvT ‖2T ≤ βref,T ‖vT ‖1,T

(
‖Gk

β,TvT ‖2T + hT ‖Gk
β,TvT ‖2∂T

) 1
2

. βref,T ‖vT ‖1,T ‖G
k
β,TvT ‖T ,

where we have used the discrete trace inequality (88) together with the uniform bound on the number
of faces in FT to conclude. From the previous bound, recalling the definition (2525) of the local Péclet
number, it is inferred that∑

T∈Th

hTβ
−1
ref,T ‖G

k
β,TvT ‖2T ≤

∑
T∈Th

νPeT ‖vT ‖21,T . νPeh‖vh‖21,h, (51)

where we have used the definition (2626) of the global Péclet number to conclude. The second inequality
in (4848) then follows using (4949)–(5151) to bound the right-hand side of (2727).

5.2 Convergence

This section contains the proof of Theorem 99 preceeded by the required preliminary results.

5.3 Preliminary results

In this section we prove three lemmas that contain consistency results for the bilinear forms appearing
in (3131).

Lemma 13 (Consistency of the viscous bilinear form). For any w ∈ H1
0 (Ω)d ∩Hk+2(Th)d such that

∆w ∈ L2(Ω)d and all vh ∈ U
k
h,0, it holds that

Ea,ν,h(w;vh) :=
∣∣∣ν(∆w,vh) + aν,h(Ikhw,vh)

∣∣∣ . (∑
T∈Th

νh
2(k+1)
T |w|2Hk+2(T )d

) 1
2

‖vh‖ν,h. (52)
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Proof. In the proof we set, for the sake of brevity, w̌T := rk+1
T IkTw = π1,k+1

T w (see (1010)). Integrating
by parts element by element, it is inferred that

ν(∆w,vh) = −
∑
T∈Th

(
ν(∇w,∇vT )T +

∑
F∈FT

ν(∇wnTF ,vF − vT )F

)
, (53)

where we have used the fact that ∇w has continuous normal trace across any F ∈ F i
h (cf., e.g., [4242,

Lemma 1.24]) and that vF = 0 for all F ∈ Fb
h to insert vF into the second term. On the other hand,

expanding first aν,h then aν,T according to their respective definitions (11a11a) and (11b11b), and using for
any T ∈ Th the definition (99) of rk+1

T vT with w = w̌T , we arrive at

aν,h(Ikhw,vh) =
∑
T∈Th

(
ν(∇w̌T ,∇vT )T +

∑
F∈FT

ν(∇w̌TnTF ,vF − vT )F

)
+
∑
T∈Th

sν,T (IkTw,vT ).

(54)
Summing (5353) and (5454), observing that the first terms inside parentheses cancel out by definition (66)

of π1,k+1
T since vT ∈ Pk(T )d ⊂ Pk+1(T )d, and using Cauchy–Schwarz inequalities, we infer that

Ea,ν,h(w;vh) ≤

(∑
T∈Th

νhT ‖∇(w̌T −w)nT ‖2∂T

) 1
2
(
ν
∑
T∈Th

∑
F∈FT

h−1
F ‖vF − vT ‖

2
F

) 1
2

+

(∑
T∈Th

sν,T (IkTw, I
k
Tw)

) 1
2
(∑
T∈Th

sν,T (vT ,vT )

) 1
2

=: T1 + T2.

(55)

Using the optimal approximation properties (7b7b) of the elliptic projector with ξ = 1, l = k + 1,
s = k + 2, and m = 1 together with the norm equivalence (1414), it is readily inferred that

T1 .

(∑
T∈Th

νh
2(k+1)
T |w|2Hk+2(T )d

) 1
2

‖vh‖ν,h.

On the other hand, recalling the approximation properties (1515) of the stabilization bilinear form and
the definition (1414) of ‖·‖ν,h, we get

T2 .

(∑
T∈Th

νh
2(k+1)
T |w|2Hk+2(T )d

) 1
2

‖vh‖ν,h.

Plugging the above estimates into (5555), (5252) follows.

Lemma 14 (Consistency of the advection-reaction bilinear form). For all w ∈ H1
0 (Ω)d ∩Hk+1(Th)d

and all vh ∈ U
k
h,0, it holds that

Ea,β,µ,h(w;vh) :=
∣∣∣((β·∇)w + µw,vh)− aβ,µ,h(Ikhw,vh)

∣∣∣
.

(∑
T∈Th

βref,T min(1,PeT )h2k+1
T |w|2Hk+1(T )d

) 1
2

‖vh‖U ,h.
(56)

Proof. Integrating by parts the first term inside absolute value in (5656), recalling that ∇·β = 0 by
assumption, and adding the following quantity (recall that w has continuous trace across interfaces
and that vF = 0 for all F ∈ Fb

h ):

−
∑
T∈Th

∑
F∈FT

(βTFw,vF )F = 0,
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we have, expanding the definition (1616) of the discrete advective derivative and of the upwind stabi-
lization,

Ea,β,µ,h(w;vh) =

����������∑
T∈Th

(w − ŵT , µvT )T +
∑
T∈Th

(ŵT −w|T , (β·∇)vT )T︸ ︷︷ ︸
T1

+
∑
T∈Th

∑
F∈FT

(βTF (ŵT −w|T ),vF − vT )F −
∑
T∈Th

∑
F∈FT

(β−TF (ŵF − ŵT ),vF − vT )F︸ ︷︷ ︸
T2

,

where we have used the definition (44) of the orthogonal projector (recall that ŵT = π0,k
T w) together

with the fact that (µvT ) ∈ Pk(T )d since µ is constant over Ω by assumption to cancel the first term
in the right-hand side.

Observing that (π0,0
T β)·∇vT ∈ Pk−1(T )d ⊂ Pk(T )d, we can use again the definition (44) of the L2-

orthogonal projector to write

T1 =
∑
T∈Th

(ŵT −w, (β − π0,0
T β)·∇vT ).

Using the Hölder and Cauchy–Schwarz inequalities, we can now estimate the first term as follows:

|T1| ≤
∑
T∈Th

‖β − π0,0
T β‖L∞(T )d‖ŵT −w‖T ‖∇vT ‖T

.
∑
T∈Th

τ
− 1

2

ref,Th
k+1
T |w|Hk+1(T )d τ

− 1
2

ref,T ‖vT ‖T

≤

(∑
T∈Th

τ−1
ref,Th

2(k+1)
T |w|2Hk+1(T )d

) 1
2

‖vh‖β,µ,h.

(57)

To pass to the second line, we have used the Lipschitz continuity of β together with the definition
(2424) of the reference time τref,T to write for the first factor ‖β − π0,0

T β‖L∞(T )d ≤ Lβ,ThT ≤ τ−1
ref,ThT ,

the approximation properties (7a7a) of π0,k
T with ξ = 0, l = k, m = 0, and s = k + 1 to bound the

second factor, and the inverse inequality (88) to bound the third. The inequality in the third line is
an immediate consequence of the discrete Cauchy–Schwarz inequality.

The term T2 is estimated using the following decomposition based on the local Péclet number:

T2 = Td
2 + Ta

2,

where the subscript “d” (for “diffusion-controlled”) corresponds to integrals where |PeTF | < 1, while
the subscript “a” (for “advection-controlled”) to integrals where |PeTF | ≥ 1. Henceforth, we denote
by χ|PeTF |<1 and χ|PeTF |≥1 the two characteristic functions of the corresponding regions. The linearity

and idempotency of π0,k
F followed by its L2(F )d-continuity yield

‖ŵF − ŵT ‖F = ‖π0,k
F (w − ŵT )‖F ≤ ‖w − ŵT ‖F .

Hence we can write for the diffusion-controlled contribution, using the Hölder and Cauchy–Schwarz
inequalities,

Td
2 .

∑
T∈Th

∑
F∈FT

‖βTFχ|PeTF |<1‖L∞(F ) (‖ŵT −w‖F + ‖ŵT − ŵF ‖F ) ‖vF − vT ‖F

.
∑
T∈Th

∑
F∈FT

β
1
2

ref,T ‖PeTFχ|PeTF |<1‖
1
2

L∞(F )‖w − ŵT ‖F
(
ν

hF

) 1
2

‖vF − vT ‖F

.

(∑
T∈Th

βref,T min(1,PeT )‖w − ŵT ‖2∂T

) 1
2

‖vh‖ν,h.

(58)
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To pass to the second line, we have multiplied and divided by (ν/hF )
1
2 ' (hT /ν)−

1
2 , recalled the defi-

nition (2020) of the local face Péclet number to write (hT /ν)−
1
2 ‖βTFχ|PeTF |<1‖

1
2

L∞(F ) = ‖PeTFχ|PeTF |<1‖
1
2

L∞(F ),

and estimated ‖βTFχ|PeTF |<1‖
1
2

L∞(F ) ≤ ‖βTF ‖
1
2

L∞(F ) ≤ β
1
2

ref,T . To pass to the third line, and we have

used a discrete Cauchy–Schwarz inequality together with the definition (2828) of the ‖·‖ν,h-norm.

For the advection-controlled contribution, using again the Hölder and Cauchy–Schwarz inequalities
we have, on the other hand,

Ta
2 ≤

(∑
T∈Th

∑
F∈FT

‖βTFχ|PeTF |≥1‖L∞(F )‖w − ŵT ‖2F

) 1
2

×

(∑
T∈Th

∑
F∈FT

(
|βTF |χ|PeTF |≥1(vF − vT ),vF − vT

)
F

) 1
2

.

(∑
T∈Th

βref,T min(1,PeT )‖w − ŵT ‖2∂T

) 1
2

‖vh‖β,µ,h.

(59)

Owing to the approximation properties (7b7b) of ŵT = π0,k
T w it holds, for all T ∈ Th and all F ∈ FT ,

‖w − ŵT ‖2F . h
k+ 1

2

T |w|Hk+1(T )d .

Plugging this bound into (5858) and (5959), we conclude that

|T2| .

(∑
T∈Th

βref,T min(1,PeT )h2k+1
T |w|2Hk+1(T )d

) 1
2

‖vh‖U ,h. (60)

Combining (5757) and (6060), (5656) follows.

Lemma 15 (Consistency of the velocity-pressure coupling bilinear form). For any q ∈ P ∩H1(Ω) ∩
Hk+1(Th) and all vh ∈ U

k
h,0, it holds that

Eb,h(q;vh) :=
∣∣∣−(vh,∇q) + bh(vh, π

0,k
h q)

∣∣∣ . (∑
T∈Th

ν−1h
2(k+1)
T |q|2Hk+1(T )

) 1
2

‖vh‖ν,h. (61)

Proof. Expanding bh then Dk
T according to their respective definitions (2323) and (2121), we obtain

bh(vh, π
0,k
h q) = −

∑
T∈Th

(
−(vT ,∇π0,k

T q)T +
∑
F∈FT

(vF ·nTF , π0,k
T q)F

)

= −
∑
T∈Th

(
(∇·vT , q)T +

∑
F∈FT

((vF − vT )·nTF , π0,k
T q)F

)
,

(62)

where, to pass to the second line, we have integrated by parts the first term inside parentheses and
we have used the fact that ∇·vT ∈ Pk−1(T ) ⊂ Pk(T ) and the definition (44) of the L2-orthogonal

projector to write q instead of π0,k
T q in the first term. On the other hand, an element by element

integration by parts gives

− (vh,∇q) =
∑
T∈Th

(
(∇·vT , q)T +

∑
F∈FT

((vF − vT )·nTF , q)F

)
, (63)

where, to insert vF into the second term, we have used the fact that the jumps of q vanish across
interfaces (a consequence of the regularity assumption q ∈ H1(Ω), see [4242, Lemma 1.23]) together
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with the fact that vF = 0 for all F ∈ Fb
h . Summing (6262) and (6363), taking absolute values, and using

the Cauchy–Schwarz inequality to bound the right-hand side of the resulting expression, it is inferred
that

Eb,h(q;vh) ≤

(∑
T∈Th

∑
F∈FT

ν−1hF ‖π0,k
T q − q‖2F

) 1
2
(
ν
∑
T∈Th

∑
F∈FT

h−1
F ‖vF − vT ‖

2
F

) 1
2

.

(∑
T∈Th

ν−1hk+1
T |q|2Hk+1(T )

) 1
2

‖vh‖ν,h,

where we have used the optimal approximation properties (7b7b) of π0,k
T with ξ = 0, l = k, s = k + 1,

and m = 0 together with the definition (1414) of the ‖·‖1,h norm and the norm equivalence (1414) to
conclude.

5.4 Error estimates and convergence

We are now ready to prove Theorem 99.

Proof of Theorem 99. (i) Error estimates. The error estimates (4040) are a consequence of [5050, Theorem
2.34] applied to the error equation (3838); see also the discussion in point (iv) of the proof of Theorem
66 in Section 5.15.1.

(ii) Convergence rate. Let vh ∈ U
k
h,0. Using the definition (3939) of R(u, p) together with the fact

that (1a1a) is satisfied almost everywhere in Ω by the weak solution (u, p) of (22), it is inferred for all
vh ∈ U

k
h,0

〈R(u, p),vh〉 = −ν(∆u,vh)− aν,h(ûh,vh)

+ ((β·∇)u + µu,vh)− aβ,µ,h(ûh,vh)

+ (∇p,vh)− bh(vh, p̂h).

Hence, passing to absolute values and using the triangle inequality, we can write

|〈R(u, p),vh〉| ≤ Ea,ν,h(u;vh) + Ea,β,µ,h(u;vh) + Eb,h(p;vh), (64)

with error contributions respectively defined in Lemmas 1313, 1414, and 1515. Using (5252), (5656), and (6161),
respectively, to bound the terms in the right-hand side of (6464), it is readily inferred that

|〈R(u, p),vh〉| ≤
∑
T∈Th

(
h

2(k+1)
T N1,T + min(1,PeT )h2k+1

T N2,T

) 1
2 ‖vh‖U ,h. (65)

Expanding ‖R(u, p)‖U∗,h according to its definition (2929) and using (6565), (4141) follows.

A Flux formulation

In this section we reformulate the discrete problem in terms of numerical fluxes, and show that local
momentum and mass balances hold. Let a mesh element T ∈ Th be fixed, and define the boundary
difference space

Dk
∂T :=

{
α∂T = (αF )F∈FT

: αF ∈ Pk(F )d for all F ∈ FT
}
.

We introduce the boundary difference operator ∆k
∂T : Uk

T →Dk
∂T such that, for all vT ∈ U

k
T ,

∆k
∂TvT := (vF − vT |F )F∈FT

.

The following result was proved in the scalar case in [4848, Proposition 3].
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Proposition 16 (Reformulation of the viscous stabilization bilinear form). Let an element T ∈ Th
be fixed, and let {sν,T : T ∈ Th} denote a family of viscous stabilization bilinear forms that satisfy
assumptions (S1)–(S3) in Remark 22, and which depend on their arguments only via the difference
operators defined by (1212). Then, for all T ∈ Th and all wT ,vT ∈ U

k
T it holds that

sν,T (wT ,vT ) = sν,T (wT , (0,∆
k
∂TvT )). (66)

The reformulation (6666) of the viscous stabilization term prompts the following definition: For all
T ∈ Th, the boundary residual operator Rk

∂T : Uk
T →Dk

∂T is such that, for all wT ∈ U
k
T ,

Rk
∂TwT = (Rk

TFwT )F∈FT

satisfies
−
∑
F∈FT

(Rk
TFwT ,αF )F = sν,T (wT , (0,α∂T )) ∀α∂T ∈D

k
∂T . (67)

Theorem 17 (Flux formulation). Under the assumptions of Proposition 1616, denote by (uh, ph) ∈
Uk
h,0 × P kh the unique solution of problem (3131) and, for all T ∈ Th and all F ∈ FT , define the

numerical normal trace of the momentum flux as

ΦTF := Φcons
TF + Φstab

TF

with consistency and stabilization contributions given by, respectively,

Φcons
TF := −ν∇rk+1

T uTnTF + βTFuT + pTnTF , Φstab
TF := Rk

TFuT + βTF (uT − uF ).

Then, for all T ∈ Th the following local balances hold: For all vT ∈ Pk(T )d and all qT ∈ Pk(T ),

ν(∇rk+1
T uT ,∇vT )T − (uT , (β·∇)vT )T + µ(uT ,vT )T − (pT ,∇·vT )T

+
∑
F∈FT

(ΦTF ,vT )F = (f ,vT )T ,
(68a)

(Dk
TuT , qT )T = 0, (68b)

where pT := ph|T and, for any interface F ∈ F i
h such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements

T1, T2 ∈ Th, the numerical traces of the flux are continuous in the sense that

ΦT1F + ΦT2F = 0. (69)

Proof. (i) Local momentum balance. Let vh ∈ Uk
h,0 be fixed. Expanding aν,h according to its

definition (1111) then using, for all T ∈ Th, the definition (99) of rk+1
T vT with w̌T = rk+1

T uT and the

definition (6767) of the boundary residual operator with wT = uT and α∂T = ∆k
∂TvT , we can write

aν,h(uh,vh) =
∑
T∈Th

(
ν(∇rk+1

T uT ,∇vT )T −
∑
F∈FT

(−ν∇rk+1
T uT +Rk

TFuT ,vF − vT )F

)
,

where the viscous stabilization was reformulated using (6666) then (6767). In a similar way, expanding
aβ,µ,h then, for all T ∈ Th, Gk

β,TvT according to their respective definitions (1717) and (1616), we have
that

aβ,µ,h(uh,vh) =
∑
T∈Th

(
−(uT , (β·∇)vT )T + µ(uT ,vT )T −

∑
F∈FT

(βTFuT + β−TF (uT − uF ),vF − vT )F

)
.

Finally, recalling the definition (2323) of bh and (2121) of the discrete divergence operator, we have that

bh(vh, ph) =
∑
T∈Th

(
−(ph,∇·vT )T −

∑
F∈FT

(pTnTF ,vF − vT )F

)
.
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Plugging the above expressions into (31a31a), we conclude that

∑
T∈Th

(
ν(∇rk+1

T uT ,∇vT )T − (uT , (β·∇)vT )T + µ(uT ,vT )T − (pT ,∇·vT )T

−
∑
F∈FT

(ΦTF ,vF − vT )F

)
= (f ,vh).

Selecting now vh such that vT spans Pk(T )d for a selected mesh element T ∈ Th while vT ′ = 0 for all
T ′ ∈ Th \{T} and vF = 0 for all F ∈ Fh, we obtain the local momentum balance (68a68a). On the other
hand, selecting vh such that vT = 0 for all T ∈ Th, vF spans Pk(F )d for a selected interface F ∈ F i

h

such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements T1, T2 ∈ Th, and vF ′ = 0 for all F ′ ∈ Fh \ {F}
yields the flux continuity (6969) after observing that (ΦT1F + ΦT2F ) ∈ Pk(F )d.

(ii) Local mass balance. We start by observing that (31b31b) holds in fact for all qh ∈ Pk(Th), not
necessary with zero mean value on Ω. This can be easily checked using the definition (2323) of bh and
(2121) of the discrete divergence to write

bh(uh, 1) = −
∑
T∈Th

(Dk
TuT , 1)T = −

∑
T∈Th

∑
F∈FT

(uF ·nTF , 1)F = −
∑
F∈Fh

∑
T∈TF

(uF ·nTF , 1)F = 0,

where we have denoted by TF the set of elements that share F and the conclusion follows from the
single-valuedness of uF for any F ∈ F i

h and the fact that uF = 0 for any F ∈ Fb
h . In order to

prove the local mass balance (68b68b), it then suffices to take qh in (31b31b) equal to qT inside T and zero
elsewhere.
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[19] A. Çeşmelioğlu, B. Cockburn, N. C. Nguyen, and J. Peraire. “Analysis of HDG methods for Os-
een equations”. In: J. Sci. Comput. 55.2 (2013), pp. 392–431. doi: 10.1007/s10915-012-9639-y10.1007/s10915-012-9639-y.
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