ON THE CALOGERO-MOSER SPACE ASSOCIATED WITH DIHEDRAL GROUPS

by

CÉDRIC BONNAFÉ

Using the geometry of the associated Calogero-Moser space, R. Rouquier and the author [BoRo] have attached to any finite complex reflection group \(W \) several notions (Calogero-Moser left, right or two-sided cells, Calogero-Moser cellular characters), completing the notion of Calogero-Moser families defined by Gordon [Gor]. If moreover \(W \) is a Coxeter group, it is conjectured in [BoRo, Chapter 15] that these notions coincide with the analogous notions defined using the Hecke algebra by Kazhdan and Lusztig (or Lusztig in the unequal parameters case).

In the present paper, we aim to investigate these conjectures whenever \(W \) is a dihedral group. Since they are all about the geometry of the Calogero-Moser space, we also study some conjectures in [BoRo, Chapter 16] about the fixed point subvariety under the action of a group of roots of unity, as well as some other aspects (presentation of the algebra of regular functions; cuspidal points as defined by Bellamy [Bel2] and their associated Lie algebra). We do not prove all the conjectures but we get at least the following results (here, \(W \) is a dihedral group of order \(2d \), acting on a complex vector space \(V \) of dimension 2; we denote by \(\mathcal{Z} \) its associated Calogero-Moser space as in [BoRo] and by \(Z \) the algebra of regular functions on \(\mathcal{Z} \); see §3.C for the definition):

- Calogero-Moser cellular characters and Kazhdan-Lusztig cellular characters coincide (this is [BoRo, Conjecture CAR]).
- Calogero-Moser families and Kazhdan-Lusztig families coincide (this is [GoMa, Conjecture 1.3]; see also [BoRo, Conjecture FAM]). This result is not new: it was already proved by Bellamy [Bel1], but we propose a slightly different proof, based on the computation of cellular characters.
- We give a presentation of \(\mathbb{C}[V \times V^*]^W \) (this extends the results of [AlFo] which deal with the case where \(d \in \{3, 4, 6\} \)). Using [BoTh], we explain how one could derive from this a presentation of \(Z \): this is done completely only for \(d \in \{3, 4, 6\} \).
- If \(d \) is odd, then Calogero-Moser (left, right or two-sided) cells coincide with the Kazhdan-Lusztig (left, right or two-sided) cells: this is a particular case of [BoRo, Conjectures L and LR]. For proving this fact, we prove that the Galois group defined in [BoRo, Chapter 5] is equal to the symmetric group \(S_W \) on the set \(W \).
- If \(d \) is odd, then we prove [BoRo, Conjecture FIX] about the fixed point subvariety \(\mathcal{Z}^\mu \).

The author is partly supported by the ANR (Project No ANR-16-CE40-0010-01 GeRepMod).
We also investigate special cases using calculations with the software MAGMA [Mag], based on the MAGMA package CHAMP developed by Thiel [Thi], and a paper in preparation by Thiel and the author [BoTh]. For instance, we get:

- If \(d \in \{3, 4, 6\} \), then we prove [BoRo, Conjecture FIX] about the fixed point subvariety \(Z^m \) (for any \(m \)).
- If \(d = 4 \) and the parameters are equal and non-zero (respectively \(d = 6 \) and the parameters are generic) and if \(m \) is a Poisson maximal ideal of \(Z \), then we prove that the Lie algebra \(m/m^2 \) is isomorphic to \(sl_3(\mathbb{C}) \) (respectively \(sp_4(\mathbb{C}) \)). We believe these intriguing examples have their own interest.

Notation.— We set \(V = \mathbb{C}^2 \) and we denote by \((x, y) \) the canonical basis of \(V \) and by \((X, Y) \) the dual basis of \(V^* \). We identify \(GL_2(\mathbb{C}) \) with \(GL_2(\mathbb{C}) \). We also fix a non-zero natural number \(d \), as well as a primitive \(d \)-th root of unity \(\zeta \in \mathbb{C} \). If \(i \in \mathbb{Z}/d \mathbb{Z} \), we denote by \(\zeta_i \) the element \(\zeta^i \) of \(\mathbb{C} \).

We denote by \(\mathbb{C}[V] \) the algebra of polynomial functions on \(V \) (so that \(\mathbb{C}[V] = \mathbb{C}[X, Y] \) is a polynomial ring in two variables) and by \(\mathbb{C}(V) \) its fraction field (so that \(\mathbb{C}(V) = \mathbb{C}(X, Y) \)). We will denote by \(\otimes \) the tensor product \(\otimes_{\mathbb{C}} \).

1. The dihedral group

1.A. Generators. — If \(i \in \mathbb{Z} \), we set

and

\[
\begin{pmatrix}
0 & \zeta^i \\
\zeta^{-i} & 0
\end{pmatrix}
\quad \text{and} \quad \begin{cases}
s = s_0, \\
t = s_1.
\end{cases}
\]

Note that \(s_i = s_{i+d} \) is a reflection of order 2 for all \(i \in \mathbb{Z} \) (so that we can write \(s_i \) for \(i \in \mathbb{Z}/d \mathbb{Z} \)). We set

\[
W = (s, t).
\]

Then \(W \) is a dihedral group of order \(2d \), and \((W, \{s, t\}) \) is a Coxeter system, where

\[
s^2 = t^2 = (st)^d = 1.
\]

If we need to emphasize the natural number \(d \), we will denote by \(W_d \) the group \(W \).

We set

\[
c = ts = \begin{pmatrix}
\zeta & 0 \\
0 & \zeta^{-1}
\end{pmatrix},
\]

so that the following equalities are easily checked (for all \(i, j \in \mathbb{Z} \))

(1.1) \(c s_i c^{-1} = s_{i+2} \) and \(s_i s_j = c^{i-j} \).

It then follows that

(1.2) \(s \) and \(t \) are conjugate in \(W \) if and only if \(d \) is odd.

Note that

(1.3) \(W = \{c^i \mid i \in \mathbb{Z}/d \mathbb{Z}\} \cup \{s_i \mid i \in \mathbb{Z}/d \mathbb{Z}\} \).

The set \(\text{Ref}(W) \) of reflections of \(W \) is equal to

(1.4) \(\text{Ref}(W) = \{s_i \mid i \in \mathbb{Z}/d \mathbb{Z}\} \).
Now, let
\[\alpha_i = \zeta^i x - y \quad \text{and} \quad \alpha_i = X - \zeta^i Y, \]
so that
\[(1.5) \quad s_i(\alpha_i) = -\alpha_i \quad \text{and} \quad s_i(\alpha_i) = -\alpha_i. \]
Finally, we fix a primitive \(2d\)-th root \(\xi\) such that \(\xi^2 = \zeta\) and we set
\[\tau = \begin{pmatrix} 0 & \xi \\ \xi^{-1} & 0 \end{pmatrix}. \]
Then it is readily seen that
\[(1.6) \quad \tau s \tau^{-1} = t, \quad \tau t \tau^{-1} = s \quad \text{and} \quad \tau^2 = 1, \]
so that \(\tau \in \text{N}_{\text{GL}_2(V)}(W).\)

Remark 1.7. — If \(d = 2e - 1\) is odd, then \(\xi = -\zeta^e\) and so \(\tau = -s_e\) induces an inner automorphism of \(W\) (the conjugacy by \(s_e\)). If \(d\) is even, then \(s\) and \(t\) are not conjugate in \(W\) and so \(\tau\) induces a non-inner automorphism of \(W\).

1.B. Irreducible characters

We denote by \(1_W\) the trivial character of \(W\) and let \(\varepsilon : W \to \mathbb{C}^\times, w \mapsto \det(w)\). If \(d\) is even, then there exist two other linear characters \(\varepsilon_s\) and \(\varepsilon_t\) which are characterized by the following properties:
\[\begin{cases} \varepsilon_s(s) = \varepsilon_t(t) = -1, \\ \varepsilon_s(t) = \varepsilon_t(s) = 1. \end{cases} \]

If \(k \in \mathbb{Z}\), we set
\[\rho_k : W \to \text{GL}_2(\mathbb{C}) \]
\[s_i \mapsto s_{ki}, \quad c^i \mapsto c^{ki}. \]
It is easily checked from (1.1) that \(\rho_k\) is a morphism of groups (that is, a representation of \(W\)). If \(R\) is any \(\mathbb{C}\)-algebra, we still denote by \(\rho_k : RW \to \text{Mat}_2(R)\) the morphism of algebras induced by \(\rho_k\). The character afforded by \(\rho_k\) is denoted by \(\chi_k\). The following proposition is well-known:

Proposition 1.8. — Let \(k \in \mathbb{Z}\). Then:

(a) \(\chi_k = \chi_{-k} = \chi_{k+d}\).
(b) If \(d\) is odd and \(k \not\equiv 0 \pmod{d}\), then \(\chi_k\) is irreducible.
(c) If \(d\) is even and \(k \not\equiv 0 \pmod{d}/2\), then \(\chi_k\) is irreducible.
(d) \(\chi_0 = 1_W + \varepsilon\) and, if \(d\) is even, then \(\chi_{d/2} = \varepsilon_s + \varepsilon_t\).

Corollary 1.9. — Recall that \(\tau\) is the element of \(\text{N}_{\text{GL}_2(V)}(W)\) defined in §1.A.

(a) If \(d\) is odd, then \(|\text{Irr}(W)| = (d + 3)/2\) and
\[\text{Irr}(W) = \{1_W, \varepsilon\} \cup \{\chi_k \mid 1 \leq k \leq (d-1)/2\}. \]

Moreover, \(\tau\) acts trivially on \(\text{Irr}(W)\).
(b) If d is even, then $|\text{Irr}(W)| = (d+6)/2$ and

$$\text{Irr}(W) = \{1_W, e, e_\sigma, e_\tau\} \cup \{X_k \mid 1 \leq k \leq (d-2)/2\}.$$

Moreover, $\gamma \chi = \chi$ if $\chi \in \text{Irr}(W) \setminus \{e, e_\tau\}$ while $\gamma e_\sigma = e_\tau$.

1.C. Some fractions in two variables. — We work in the fraction field $\mathbb{C}(V) = \mathbb{C}(X, Y)$. If $1 \leq k \leq d$, then

$$\sum_{i \in \mathbb{Z}/d\mathbb{Z}} \frac{\zeta^{ki}}{X - \zeta^i} = \frac{dX^{k-1}}{X^d - 1}. \quad (1.10)$$

$$\sum_{i \in \mathbb{Z}/d\mathbb{Z}} \frac{\zeta^{ki}}{X - \zeta^i Y} = \frac{dX^{k-1} Y^{d-k}}{X^d - Y^d}. \quad (1.11)$$

Proof. — Let us first prove (1.10). Since $1 \leq k \leq d$, there exist complex numbers $(\xi_i)_{i \in \mathbb{Z}/d\mathbb{Z}}$ such that

$$\frac{dX^{k-1}}{X^d - 1} = \sum_{i \in \mathbb{Z}/d\mathbb{Z}} \frac{\xi_i}{X - \zeta^i}.$$

Then

$$\xi_i = \lim_{z \to \zeta^i} \frac{dz^{k-1}(z - \zeta^i)}{z^d - 1} = d\zeta^{(k-1)i} \prod_{j \neq i} (\zeta^j - \zeta^i)^{-1} = d\zeta^{(k-1)i} \prod_{j=1}^{d-1} (1 - \zeta^j)^{-1} = \zeta^{ki},$$

and (1.10) is proved.

Now, (1.11) follows easily from (1.10) by replacing X by X/Y.

If $d = 2e$ is even and $1 \leq k \leq e$, then

$$\sum_{i \in \mathbb{Z}/e\mathbb{Z}} \frac{\zeta^{2ki}}{X - \zeta^{2i} Y} = eX^{k-1} Y^{e-k}, \quad (1.12)$$

$$\sum_{i \in \mathbb{Z}/e\mathbb{Z}} \frac{\zeta^{k(2i+1)}}{X - \zeta^{2i+1} Y} = -eX^{k-1} Y^{e-k}, \quad (1.13)$$

$$\sum_{i \in \mathbb{Z}/e\mathbb{Z}} \frac{\zeta^{-(k-1)(2i+1)}}{X - \zeta^{2i+1} Y} = \frac{eX^{e-k} Y^{k-1}}{X^e + Y^e}, \quad (1.14)$$

Proof. — The equality (1.12) follows from (1.10) by replacing ζ by ζ^2 and d by e. The equality (1.13) follows from (1.12) by replacing Y by ζY (note that $\zeta^e = -1$). Finally, the equality (1.14) follows from (1.13) by replacing k by $e - k + 1$ (note that $\zeta^{-(k-1)(2i+1)} = -\zeta^{2i+1} \zeta^{-(k-1)(2i+1)} = -\zeta^{e-k+1}(2i+1)$).
2. Invariants

The aim of this section is to describe generators and relations for the invariant algebra \(C[V \times V^*]^W \). Note that such results have been obtained if \(d \in \{3,4,6\} \) in [AlFo]. We set

\[
q = xy, \quad r = x^d + y^d, \quad Q = XY \quad \text{et} \quad R = X^d + Y^d.
\]

Then

\[
C[V]^W = C[Q,R] \quad \text{and} \quad C[V^*]^W = C[q,r].
\]

We set \(P_\ast = C[V]^W \otimes C[V^*]^W = C[q,r,Q,R] \subset C[V \times V^*]^W \). If \(0 \leq i \leq d \), we set

\[
a_{i,0} = x^{d-i}Y^i + y^{d-i}X^i.
\]

Note that

\[
a_{0,0} = r \quad \text{and} \quad a_{d,0} = R.
\]

Finally, let

\[
eu_0 = xX + yY.
\]

Then \(a_{i,0}, \eu_0 \in C[V \times V^*]^W \).

We will now describe some relations between these invariants. For this, let \(\eu_0^{(i)} = (xX)^i + (yY)^i \). Then the \(\eu_0^{(i)} \)'s belong also to \(C[V \times V^*]^W \). As they will appear in relations between generators of \(C[V \times V^*]^W \), we must explain how to express them as polynomials in \(\eu_0 \). First of all,

\[
\begin{align*}
eu_0^{(i)} &= \sum_{j=0}^i \binom{i}{j}(xX)^j(yY)^{i-j} \\
&= \sum_{0 \leq j \leq \frac{i}{2}} \binom{i}{j}(qQ)^j((xX)^{i-2j} + (yY)^{i-2j}) + \binom{i}{j}(qQ)^{i/2} \quad \text{if } i \text{ is even},
\end{align*}
\]

Therefore,

\[
\begin{align*}
\eu_0^{(i)} &= \sum_{0 \leq j \leq \frac{i}{2}} \binom{i}{j}(qQ)^j \eu_0^{(i-2j)} + \binom{i}{j}(qQ)^{i/2} \quad \text{if } i \text{ is even}.
\end{align*}
\]

So, by triangularity of this formula, an easy induction shows that there exists a family of integers \((n_{i,j})_{0 \leq j \leq i/2}\) such that

\[
(2.1) \quad \eu_0^{(i)} = \sum_{0 \leq j \leq \frac{i}{2}} n_{i,j} (qQ)^j \eu_0^{(i-2j)},
\]

with \(n_{i,0} = 1 \) for all \(i \).

On the other hand, one can check that the following relations hold (for \(1 \leq i \leq j \leq d-1 \)):

\[
\begin{align*}
\begin{cases}
(Z_1^0) \quad &\eu_0 a_{i,0} = qa_{i+1,0} + Qa_{i-1,0} \\
(Z_1^i) \quad &a_{i,0} \eu_0 = q^{d-i}Q^{(j-1)} \eu_0^{(j-1)} + \begin{cases}
ra_{i,j,0} - q^{d-l-j} \eu_0^{(i+j)} & \text{if } 2 \leq i + j \leq d, \\
R \eu_0^{(d)} & \text{if } i + j = d, \\
Ra_{i+j,d,0} - Q^{i+j-d} \eu_0^{(2d-l-j)} & \text{if } d \leq i + j \leq 2d-2.
\end{cases}
\end{cases}
\end{align*}
\]

Using (2.1), these last relations can be viewed as relations between \(q, r, Q, R, \eu_0, a_{1,0}, a_{2,0}, \ldots, a_{d-1,0} \).
Theorem 2.2. — The algebra of invariants \(\mathbb{C}[V \times V^*]^W \) admits the following presentation:

\[
\begin{align*}
\text{Generators:} & \quad q, r, Q, R, e_0, a_{1,0}, a_{2,0}, \ldots, a_{d-1,0} \\
\text{Relations:} & \quad (Z_i^0) \quad \text{for } 1 \leq i \leq d-1, \\
& \quad (Z_{i,j}^0) \quad \text{for } 1 \leq i \leq j \leq d-1.
\end{align*}
\]

This presentation is minimal, as well by the number of generators as by the number of relations (there are \(d + 4 \) generators and \((d + 2)(d - 1)/2 \) relations). Moreover,

\[
\mathbb{C}[V \times V^*]^W = P_r \oplus P_e e_0 \oplus P_r e_0^2 \oplus \cdots \oplus P_r e_0^d \oplus P_r a_{1,0} \oplus P_r a_{2,0} \oplus \cdots \oplus P_r a_{d-1,0}.
\]

Proof. — Let \(E^* \) denote the subspace of \(\mathbb{C}[V] \) defined by

\[
E^* = \mathbb{C} \oplus \left(\bigoplus_{i=1}^{d-1} (\mathbb{C} x_i^i \oplus \mathbb{C} y^i) \right) \oplus \mathbb{C}(x^d - y^d).
\]

Then \(E^* \) is a graded sub-\(\mathbb{C}[W] \)-module of \(\mathbb{C}[V] \). If \(0 \leq i \leq d \), let \(E_i^* \) denote the homogeneous component of degree \(i \) of \(E^* \). Whenever \(1 \leq i \leq d-1 \), it affords \(\chi_i \) for character whereas \(E_0^* \) and \(E_d^* \) afford respectively \(1_W \) and \(\varepsilon \) for characters. Similarly, we define

\[
E = \mathbb{C} \oplus \left(\bigoplus_{i=1}^{d-1} (\mathbb{C} x_i^i \oplus \mathbb{C} y^i) \right) \oplus \mathbb{C}(x^d - y^d).
\]

Then \(E \) is a graded sub-\(\mathbb{C}[W] \)-module of \(\mathbb{C}[V^*] \). If \(0 \leq i \leq d \), let \(E_i \) denote the homogeneous component of degree \(i \) of \(E \). Whenever \(1 \leq i \leq d-1 \), it affords \(\chi_i \) for character whereas \(E_0 \) and \(E_d \) afford respectively \(1_W \) and \(\varepsilon \) for characters. Moreover, the morphism of \(\mathbb{C}[V]^W \)-modules \(\mathbb{C}[V]^W \otimes E^* \rightarrow \mathbb{C}[V] \) induced by the multiplication is a \(W \)-equivariant isomorphism and the morphism of \(\mathbb{C}[V^*]^W \)-module \(\mathbb{C}[V^*]^W \otimes E \rightarrow \mathbb{C}[V^*] \) induced by the multiplication is a \(W \)-equivariant isomorphism. Consequently,

\[
(\ast) \quad \mathbb{C}[V \times V^*]^W = P_r \otimes (E^* \otimes E)^W.
\]

An easy computation of the subspaces \((E_i^* \otimes E_j)^W \) based on the previous remarks show that

\[
(1, e_0, e_0^{(2)}, \ldots, e_0^{(d-1)}, (x^d - y^d)(x^d - y^d), a_{1,0}, a_{2,0}, \ldots, a_{d-1,0})
\]

is a \(\mathbb{C} \)-basis of \((E \otimes E^*)^W \). By \((\ast) \), it is also a \(P_r \)-basis of \(\mathbb{C}[V \times V^*]^W \). On the other hand,

\[
(x^d - y^d)(x^d - y^d) = 2e_0^{(d)} - Rr,
\]

so \((1, e_0, e_0^{(2)}, \ldots, e_0^{(d)}, a_{1,0}, a_{2,0}, \ldots, a_{d-1,0}) \) is a \(P_r \)-basis of \(\mathbb{C}[V \times V^*]^W \). By (2.1),

\[
\mathbb{C}[V \times V^*]^W = P_r \oplus P_r e_0 \oplus P_r e_0^2 \oplus \cdots \oplus P_r e_0^d \oplus P_r a_{1,0} \oplus P_r a_{2,0} \oplus \cdots \oplus P_r a_{d-1,0},
\]

which shows the last assertion of the Theorem.

It also proves that \(\mathbb{C}[V \times V^*]^W = \mathbb{C}[q, r, Q, E, A_1, A_2, \ldots, A_{d-1}] \) be indeterminates over \(\mathbb{C}[q, r, Q, R] \): we have a surjective morphism

\[
\mathbb{C}[q, r, Q, R, E, A_1, A_2, \ldots, A_{d-1}] \rightarrow \mathbb{C}[V \times V^*]^W
\]

which sends \(q, r, Q, R, E, A_1, A_2, \ldots, A_{d-1} \) on \(q, r, Q, R, e_0, a_{1,0}, a_{2,0}, \ldots, a_{d-1,0} \) respectively.

For \(1 \leq i \leq j \leq d-1 \), let \(F_i \) (respectively \(F_{i,j} \)) denote the element of the polynomial algebra \(\mathbb{C}[q, r, Q, R, E, A_1, A_2, \ldots, A_{d-1}] \) corresponding to the relation \((Z_i^0) \) (respectively \((Z_{i,j}^0) \)). Let \(A \) denote the quotient of \(\mathbb{C}[q, r, Q, R, E, A_1, A_2, \ldots, A_{d-1}] \) by the ideal a generated by the
We denote by \(q_0, r_0, Q_0, R_0, E_0, A_{1,0}, A_{2,0}, \ldots, A_{d-1,0} \) the respective images of \(q, r, Q, R, E, A_1, A_2, \ldots, A_{d-1} \) in \(A \). We then have a surjective morphism of bigraded \(\mathbb{C} \)-algebras \(\varphi : A \to \mathbb{C}[V \times V^*]^W \). We want to show that \(\varphi \) is an isomorphism. For this, it is sufficient to show that the bi-graded Hilbert series coincide. But,

\[
\dim_{\mathbb{C}}^{\text{bigr}}(A) \geq \dim_{\mathbb{C}}^{\text{bigr}}(\mathbb{C}[V \times V^*]^W),
\]

where an inequality between two power series means that we have the corresponding inequality between all the coefficients.

We set \(P_0 = \mathbb{C}[q_0, r_0, Q_0, R_0] \). Let

\[
A' = P_0 + P_0E_0 + P_0E_0^2 + \cdots + P_0E_0^d + P_0A_{1,0} + P_0A_{2,0} + \cdots + P_0A_{d-1,0}.
\]

By construction,

\[
\dim_{\mathbb{C}}^{\text{bigr}}(A') \leq \dim_{\mathbb{C}}^{\text{bigr}}(\mathbb{C}[V \times V^*]^W).
\]

We will prove that

\(\text{(♠)} \quad A' \) is a subalgebra of \(A \).

For this, taking into account the form of the \(F_i \)'s and the \(F_{i,j} \)'s, it is sufficient to show that \(E_0^{d+1} \in A' \). But, by (2.1),

\[
A_{1,0}A_{d-1,0} = Q_0q_0\left(\sum_{0 < j < (d-2)/2} n_{d-2,j}E_0^{d-2-j} \right) + R_0r_0 - \sum_{0 < j < d/2} n_{d,j}E_0^{d-2j},
\]

and \(n_{d,0} = 1 \). So

\[
E_0^d = -A_{1,0}A_{d-1,0} + Q_0q_0\left(\sum_{0 < j < (d-2)/2} n_{d-2,j}E_0^{d-2-j} \right) + R_0r_0 - \sum_{1 < j < d/2} n_{d,j}E_0^{d-2j}.
\]

and so

\[
E_0^{d+1} = -E_0A_{1,0}A_{d-1,0} + Q_0q_0\left(\sum_{0 < j < (d-2)/2} n_{d-2,j}E_0^{d-1-2j} \right) + R_0r_0 - \sum_{1 < j < d/2} n_{d,j}E_0^{d+1-2j}.
\]

It is then sufficient to show that \(E_0A_{1,0}A_{d-1,0} \in A' \). But \(E_0A_{1,0}A_{d-1,0} = (q_0A_{2,0} + Q_0r_0)A_{d-1,0} \), which concludes the proof of (♠).

Since \(A' \) contains \(q_0, r_0, Q_0, R_0, E_0, A_{1,0}, A_{2,0}, \ldots, A_{d-1,0} \) and since \(A \) is generated by these elements, we have \(A = A' \). It follows from (♠) and (♦) that \(\dim_{\mathbb{C}}^{\text{bigr}}(A) = \dim_{\mathbb{C}}^{\text{bigr}}(\mathbb{C}[V \times V^*]^W) \), which shows that \(\varphi : A \to \mathbb{C}[V \times V^*]^W \) is an isomorphism. In other words, this shows that the presentation of \(\mathbb{C}[V \times V^*]^W \) given in Theorem 2.2 is correct.

It remains to prove the minimality of this presentation. The minimality of the number of generators follows from [BoTh]. Let us now prove the minimality of the number of relations. For this, let \(p_0 \) denote the bi-graded maximal ideal of \(P_0 \) and set \(B = \mathbb{C}[V \times V^*]^W/p_0\mathbb{C}[V \times V^*]^W \). We denote by \(e, a_1, a_2, \ldots, a_{d-1} \) the respective images of \(\textbf{e}u_0, a_{1,0}, a_{2,0}, \ldots, a_{d-1,0} \) in \(B \). Hence,

\[
B = \mathbb{C} \oplus \mathbb{C}e \oplus \mathbb{C}e^2 \oplus \cdots \oplus \mathbb{C}e^d \oplus \mathbb{C}a_1 \oplus \mathbb{C}a_2 \oplus \cdots \oplus \mathbb{C}a_{d-1}
\]
and B admits the following presentation:

$$\begin{align*}
\text{Generators:} & \quad e, a_1, a_2, \ldots, a_{d-1} \\
\text{Relations (}1 \leq i \leq j \leq d - 1\text{):} & \quad \begin{cases}
ea_i = 0 \\
a_i a_j = \begin{cases}0 & \text{if } i + j \neq d, \\ -e^d & \text{if } i + j = d.\end{cases}
\end{cases}
\end{align*}$$

It is sufficient to prove that the number of relations of B is minimal. By reducing modulo the ideal Be, we get that all the relations of the form $a_i a_j = 0$ or $-e^d$ are necessary. By reducing modulo the ideal $Ba_1 + \cdots + Ba_{i-1} + Ba_{i+1} + \cdots Ba_{d-1}$, we get that the relations $e a_i = 0$ are necessary.

\begin{remark}
It is easily checked that the element τ defined in §1.A satisfies

$$\tau q = q, \quad \tau Q = Q, \quad \tau e u_0 = e u_0 \quad \text{and} \quad \tau a_i = -a_i$$

for all $0 \leq i \leq d$ (this follows from the fact that $\xi^d = -1$).
\end{remark}

\begin{remark}[Gradings]
The algebra $\mathbb{C}[V \times V^*]$ admits a natural $(\mathbb{N} \times \mathbb{N})$-grading, by putting elements of V in bi-degree $(1,0)$ and elements of V^* in bi-degree $(0,1)$. This bi-grading is stable under the action of W, so $\mathbb{C}[V \times V^*]^W$ inherits this bi-grading. Note that the generators and the relations given by Theorem 2.2 are bi-homogeneous.

This $(\mathbb{N} \times \mathbb{N})$-grading induces a \mathbb{Z}-grading such that any bi-homogeneous element of bi-degree (m,n) is \mathbb{Z}-homogeneous of degree $n-m$ (in other words, elements of V have \mathbb{Z}-degree -1 while elements of V^* have \mathbb{Z}-degree 1).
\end{remark}

\section{Cherednik algebras}

\subsection{Definition}
We denote by \mathcal{C} the \mathbb{C}-vector space of maps $\text{Ref}(W) \to \mathbb{C}$ which are constant on conjugacy classes. If $i \in \mathbb{Z}/d\mathbb{Z}$, we denote by C_i the element of \mathcal{C} which sends $c \in \mathcal{C}$ to c_i. By (1.1), $C_i = C_{i+2}$. Let $A = C_0$ and $B = C_1$. If d is odd, then $A = B$ and $\mathbb{C}[\mathcal{C}] = \mathbb{C}[A]$ whereas, if d is even, then $A \neq B$ (see (1.2)) and $\mathbb{C}[\mathcal{C}] = \mathbb{C}[A,B]$.

The generic rational Cherednik algebra at $t = 0$ is the $\mathbb{C}[\mathcal{C}]$-algebra \mathbf{H} defined as the quotient of $\mathbb{C}[\mathcal{C}] \otimes (T(V \oplus V^*) \rtimes W)$ by the following relations (here, $T(V \oplus V^*)$ is the tensor algebra of $V \oplus V^*$ over \mathbb{C}):

\begin{align*}
\begin{cases}
[u, u'] &= [U, U'] = 0, \\
[u, U] &= -2 \sum_{i \in \mathbb{Z}/d\mathbb{Z}} C_i \frac{\langle u, a_i \rangle \cdot \langle a_i', U \rangle}{\langle a_i', a_i \rangle} s_i,
\end{cases}
\end{align*}

for $U, U' \in V^*$ and $u, u' \in V$. Note that we have followed the convention of $[\text{BoRo}]$.

Given the relations (3.1), the following assertions are clear:

- There is a unique morphism of \mathbb{C}-algebras $\mathbb{C}[V] \to \mathbf{H}$ sending $U \in V^* \subset \mathbb{C}[V]$ to the class of $U \in T(V \oplus V^*) \rtimes W$ in \mathbf{H}.
- There is a unique morphism of \mathbb{C}-algebras $\mathbb{C}[V^*] \to \mathbf{H}$ sending $u \in V \subset \mathbb{C}[V^*]$ to the class of $u \in T(V \oplus V^*) \rtimes W$ in \mathbf{H}.
• There is a unique morphism of \(\mathbb{C} \)-algebras \(\mathbb{C} W \to H \) sending \(w \in W \) to the class of \(w \in T(V \oplus V^*) \times W \) in \(H \).
• The \(\mathbb{C} \)-linear map \(\mathbb{C}[\mathcal{C}] \otimes \mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}[V^*] \to H \) induced by the three morphisms defined above and the multiplication map is surjective. Note that it is \(\mathbb{C}[\mathcal{C}] \)-linear.

The last statement is strengthened by the following fundamental result by Etingof and Ginzburg [EtGi, Theorem 1.3] (see also [BoRo, Theorem 4.1.2]).

Theorem 3.2 (Etingof-Ginzburg). — The multiplication map \(\mathbb{C}[\mathcal{C}] \otimes \mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}[V^*] \to H \) is an isomorphism of \(\mathbb{C}[\mathcal{C}] \)-modules.

Remark 3.3. — By [BoRo, §3.5.C], the group \(N_{GL_{C}(V)}(W) \) acts naturally on \(H \). It follows from (1.6) that
\[
\tau A = B \quad \text{and} \quad \tau B = A.
\]
Here, \(\tau \) is the element of \(N_{GL_{C}(V)}(W) \) defined in §1.A. ■

Remark 3.4 (Gradings). — The algebra \(H \) admits a natural \((\mathbb{N} \times \mathbb{N})\)-grading, by putting \(V \) in bi-degree \((1, 0)\), \(V^* \) in bi-degree \((0, 1)\), \(W \) in degree \((0, 0)\) and \(\mathcal{C} \) in degree \((1, 1)\) (see for instance [BoRo, §3.2]).

This \((\mathbb{N} \times \mathbb{N})\)-grading induces a \(\mathbb{Z} \)-grading such that any bi-homogeneous element of bi-degree \((m, n)\) is \(\mathbb{Z} \)-homogeneous of degree \(n - m \). In other words, \(\deg(V) = -1, \deg(V^*) = 1 \) and \(\deg(W) = 0 = \deg(\mathcal{C}) = 0 \). ■

3.B. Specialization. — Given \(c \in \mathcal{C} \), we denote by \(\mathcal{C}_c \) the maximal ideal of \(\mathbb{C}[\mathcal{C}] \) defined by \(\mathcal{C}_c = \{ f \in \mathbb{C}[\mathcal{C}] | f(c) = 0 \} \); it is the ideal generated by \((C_i - c_s)_{i \in \mathbb{Z}/d\mathbb{Z}} \). We set
\[
H_c = (\mathbb{C}[\mathcal{C}] / \mathcal{C}_c) \otimes_{\mathbb{C}[\mathcal{C}]} H = H / \mathcal{C}_c H.
\]
The \(\mathbb{C} \)-algebra \(H_c \) is the quotient of the \(\mathbb{C} \)-algebra \(T(V \oplus V^*) \times W \) by the ideal generated by the following relations:
\[
[u, u'] = [U, U'] = 0,
\]
(3.5)
\[
[u, U] = -2 \sum_{i \in \mathbb{Z}/d\mathbb{Z}} c_i \frac{\langle u, a_i \rangle \cdot \langle a'_i, U \rangle}{\langle a'_i, a_i \rangle} s_i,
\]
for \(U, U' \in V^* \) and \(u, u' \in V \).

Remark 3.6 (Grading). — The ideal \(\mathcal{C}_c \) is not bi-homogeneous (except if \(c = 0 \)) so the algebra \(H_c \) does not inherit from \(H \) an \((\mathbb{N} \times \mathbb{N})\)-grading. However, \(\mathcal{C}_c \) is \(\mathbb{Z} \)-homogeneous, so \(H_c \) still admits a natural \(\mathbb{Z} \)-grading. ■
3.C. Calogero-Moser space. — We denote by Z the centre of H. By [EtGi], it contains $C[V]^W$ and $C[V^*]^W$ so, by Theorem 3.2, it contains the subalgebra

$$P = C[\mathcal{C}] \otimes C[V]^W \otimes C[V^*]^W.$$

Similarly, if $c \in \mathcal{C}$, we denote by Z_c the centre of H_c: it turns out [BoRo, Corollary 4.2.7] that Z_c is the image of Z and that the image of P in Z_c is $P_c = C[V]^W \times C[V^*]^W$. Recall also (see for instance [BoRo, Corollary 4.2.7]) that

$$(3.7) \quad Z \text{ is a free } P \text{-module of rank } |W|.$$

Since the C-algebra \mathcal{Z} is finitely generated, we can associate to it an algebraic variety over C, called the generic Calogero-Moser space, and which will be denoted by \mathcal{Z}. If $c \in \mathcal{C}$, we denote by \mathcal{Z}_c the algebraic variety associated with the C-algebra Z_c.

3.D. About the presentation of Z. — We follow here the method of [BoTh]. If $h \in H$, it follows from Theorem 3.2 that there exists a unique family of elements $(h_w)_{w \in W}$ of $C[\mathcal{C}] \otimes C[V] \otimes C[V^*]$ such that

$$h = \sum_{w \in W} h_w w.$$

We define the $C[\mathcal{C}]$-linear map $\text{Trunc}: H \to C[\mathcal{C}] \otimes C[V] \otimes C[V^*]$ by

$$\text{Trunc}(h) = h_1.$$

The next lemma is proved in [BoTh]:

Lemma 3.8. — The restriction of Trunc to Z yields an isomorphism of bi-graded $C[\mathcal{C}]$-modules

$$\text{Trunc}: Z \xrightarrow{\sim} C[\mathcal{C} \times V \times V^*]^W.$$

We then set $\text{eu} = \text{Trunc}^{-1}(\text{eu}_0)$ and, for $0 \leq i \leq d$,

$$a_i = \text{Trunc}^{-1}(a_{i,0}).$$

An explicit algorithm for computing the inverse map Trunc^{-1} is described in [BoTh]. Note that $\text{Trunc}^{-1}(p) = p$ for $p \in P$, so that $a_0 = a_{d,0} = r$ and $a_d = a_{d,0} = R$. By [BoTh], the relations $(Z_1)_{1 \leq i \leq d-1}$ and $(Z_{i,j})_{1 \leq i \leq j \leq d-1}$ can be deformed into relations $(Z_1)_{1 \leq i \leq d-1}$ and $(Z_{i,j})_{1 \leq i \leq j \leq d-1}$ and it follows from Theorem 2.2 and [BoTh] that:

Theorem 3.9. — The centre Z of H admits the following presentation, as a $C[\mathcal{C}]$-algebra:

$$\begin{align*}
\text{Generators:} & \quad q, r, Q, R, \text{eu}, a_1, a_2, \ldots, a_{d-1} \\
\text{Relations:} & \quad (Z_1) \quad \text{for } 1 \leq i \leq d-1, \\
& \quad (Z_{i,j}) \quad \text{for } 1 \leq i \leq j \leq d-1.
\end{align*}$$

This presentation is minimal, as well by the number of generators as by the number of relations (there are $d + 4$ generators and $(d + 2)(d - 1)/2$ relations). Moreover,

$$Z = P \oplus P \text{eu} \oplus P \text{eu}^2 \oplus \cdots \oplus P \text{eu}^d \oplus P a_1 \oplus P a_2 \oplus \cdots \oplus P a_{d-1}.$$

It must be said that we have no way to determine explicitly the relations $(Z_{i,j})$ in general: we will describe them precisely only for $d \in \{3, 4, 6\}$ in §8. Note that the information provided by Theorem 3.9 is sufficient enough to be able to prove Theorem 7.1 in Section 7.
Remark 3.10 (Gradings). — The bi-grading and the \mathbb{Z}-grading on the algebra H constructed in Remark 3.4 induce a bi-grading and a \mathbb{Z}-grading on Z. Note that the map Trunc is bi-graded, so that the generators given in Theorem 3.9 are bi-homogeneous.

On the other hand, the deformation process for the relations described in [BoTh] respects the bi-grading. So we may, and we will, assume in the rest of this paper that the relations (Z_i) and $(Z_{i,j})$ given in Theorem 3.9 are bi-homogeneous. ■

From now on, and until the end of this paper, we fix a parameter $c \in \mathcal{C}$ and we set $a = cs$ and $b = ct$. Note that, if d is odd, then $a = b$.

3.E. Poisson bracket. — Recall from [BoRo, §4.4.A] that the algebra Z is endowed with a $\mathbb{C}[\mathcal{C}]$-linear Poisson bracket
\[
\{,\} : Z \times Z \rightarrow Z,
\]
which is a deformation of the Poisson bracket on $Z_0 = \mathbb{C}[V \times V^*]^W$ obtained by restriction of the W-equivariant canonical Poisson bracket on $\mathbb{C}[V \times V^*]$. This Poisson bracket induces a Poisson bracket on Z_c. It satisfies
\[
(3.11) \quad \{q, Q\} = eu
\]
(see [De, §4] or [BEG, §3]).

4. Calogero-Moser cellular characters

The aim of this section is to determine, for all values of c, the Calogero-Moser c-cellular characters as defined in [BoRo, §11.1]. It will be given in Table 4.14 at the end of this section. We will use the alternative definition [BoRo, Theorem 13.4.2], which is more convenient for computational purposes (see also [BoTh]). So, following [BoRo, Chapter 13], we set
\[
D_x = \sum_{i \in \mathbb{Z}/d\mathbb{Z}} \epsilon(s_i)c_{s_i}\frac{(x, a_i)}{a_i} s_i = -\sum_{i \in \mathbb{Z}/d\mathbb{Z}} c_{s_i}\frac{1}{X - \zeta^i Y} s_i \in \mathbb{C}(V)[W]
\]
and
\[
D_y = \sum_{i \in \mathbb{Z}/d\mathbb{Z}} \epsilon(s_i)c_{s_i}\frac{(y, a_i)}{a_i} s_i = \sum_{i \in \mathbb{Z}/d\mathbb{Z}} c_{s_i}\frac{\zeta^i}{X - \zeta^i Y} s_i \in \mathbb{C}(V)[W].
\]
We denote by $\text{Gau}(W,c)$ the sub-$\mathbb{C}(V)$-algebra of $\mathbb{C}(V)[W]$ generated by D_x and D_y (it is commutative by [BoRo, §13.4.B]). Note that this algebra is not necessarily split. If L is a simple $\text{Gau}(W,c)$-module, and if $\chi \in \text{Irr}(W)$, we denote by $\text{mult}_{L,\chi}^{\text{CM}}$ the multiplicity of L in a composition series of the $\text{Res}^{\mathbb{C}(V)^W}_{\text{Gau}(W,c)} \mathbb{C}(V)E_{\chi}$, where E_{χ} is a $\mathbb{C}W$-module affording the character χ. We then set
\[
\gamma_L = \sum_{\chi \in \text{Irr}(W)} \text{mult}_{L,\chi}^{\text{CM}} \chi.
\]
The set of Calogero-Moser c-cellular characters is
\[
\text{CellChar}_{\text{CM}}^c(W) = \{\gamma_L \mid L \in \text{Irr}(\text{Gau}(W,c))\}.\]
We will denote by \mathcal{E}_G^{1} (respectively \mathcal{E}_G^{ϵ}, respectively \mathcal{L}_G^{k}) the restriction of $\mathbb{C}(V)E_{W}^{1}$ (respectively $\mathbb{C}(V)E_{W}^{\epsilon}$, respectively $\mathbb{C}(V)E_{W}^{\chi}$) to $\text{Gau}(W, c)$. If d is even, then the restriction of $\mathbb{C}(V)E_{s}$ (respectively $\mathbb{C}(V)E_{t}$) to $\text{Gau}(W, c)$ will be denoted by \mathcal{E}_G^{s} (respectively \mathcal{E}_G^{t}).

Remark 4.1. — Note that, since $\text{Gau}(W, c) \subset \mathbb{C}(V)W$, every simple $\text{Gau}(W, c)$-module occurs as a composition factor of some $\text{Res}^{\mathbb{C}(V)W}_{\text{Gau}(W, c)}\mathbb{C}(V)E_{\chi}$, for χ running over $\text{Irr}(W)$.

Notation. — For simplifying the computation in this section, we set

$$D'_{x} = \frac{Y^{d} - X^{d}}{d}D_{x} \quad \text{and} \quad D'_{y} = \frac{X^{d} - Y^{d}}{d}D_{y},$$

so that $\text{Gau}(W, c)$ is the sub-$\mathbb{C}(V)$-algebra of $\mathbb{C}(V)W$ generated by D'_{x} and D'_{y}.

4.A. The case where $a = b = 0$. — Whenever $a = b = 0$, there is only one Calogero-Moser 0-cellular character [BoRo, Corollary 17.2.3], namely the regular character $\sum_{\chi \in \text{Irr}(W)} \chi(1)\chi$.

4.B. The case where $a \neq b = 0$. — We will assume here, and only here, that $b = 0 \neq a$: this forces d to be even (and we write $d = 2e$). Let W' be the subgroup of W generated by $s = s_{0}$ and $s_{2} = ts$. Then W' is a dihedral group of order $2e$ and

$$W = \langle t \rangle \ltimes W'.$$

Let c' denote the restriction of c to $\text{Ref}(W')$: then c' is constant (and equal to a) and $\text{Gau}(W, c) = \text{Gau}(W', c')$. It then follows from the definition that the Calogero-Moser c'-cellular characters are all the characters of the form $\text{Ind}^{W}_{W'}\gamma'$, where γ' is a Calogero-Moser c'-cellular character of W'. These characters γ' will be determined in the next subsection and so it follows that the list of c-cellular characters of W is

$$1 + \epsilon_{t}, \quad \epsilon_{s} + \epsilon, \quad \sum_{k=1}^{(d-2)/2} \chi_{k}. \quad (4.2)$$

Remark 4.3. — If $a = 0$ and $b \neq 0$, then one can use the element $n \in \mathcal{N}$ of order 2 such that $^{n}s = t$ and $^{n}t = s$ to be sent back to the previous case. We then deduce from (4.2) that the list of c-cellular characters of W is

$$1 + \epsilon_{s}, \quad \epsilon_{t} + \epsilon, \quad \sum_{k=1}^{(d-2)/2} \chi_{k}. \quad (4.4)$$

Note that we have a semi-direct product decomposition $W = \langle s \rangle \ltimes ^{n}W'$.
4.C. The equal parameters case. — We assume here, and only here, that \(a = b \neq 0 \). Then, if \(1 \leq k \leq d - 1 \), then
\[
\rho_k(D'_x) = -a \frac{Y^d}{d} X^d \sum_{i \in \mathbb{Z} / d \mathbb{Z}} \frac{1}{X - \zeta_i Y} \begin{pmatrix} 0 & r^{ki} \\ \zeta & 0 \end{pmatrix} = a \begin{pmatrix} 0 & X^{k-1} Y^{d-k} \\ X^{d-k-1} Y^k & 0 \end{pmatrix}
\]

by using (1.11). Similarly,
\[
\rho_k(D'_y) = a \begin{pmatrix} 0 & X^k Y^{d-k-1} \\ X^{d-k-1} Y^k & 0 \end{pmatrix} = X Y \rho_k(D'_x).
\]

If we denote by \(M \) the diagonal matrix \(\begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} \), then it follows from the previous formulas that
\[
\forall 1 \leq k \leq d - 2, \forall D \in \text{Gau}(W, c), \quad M \rho_k(D) M^{-1} = \rho_{k+1}(D).
\]

This implies that
\[
\forall 1 \leq k \leq d - 2, \quad \mathcal{L}_k \sim \mathcal{L}_{k+1}.
\]

Since \(\text{Tr}(\rho_k(D'_x)) = \text{Tr}(\rho_k(D'_y)) = 0 \), the nature of the restriction of \(\rho_k \) to \(\text{Gau}(W, c) \) depends on whether \(-\det(\rho_k(D'_x)) = a^2 X^d Y^{d-2} \) is a square in \(\mathbb{C}(V) \). Two cases may occur:

First case: assume that \(d \) is odd. — Then \(-\det(\rho_k(D'_x)) \) is not a square in \(\mathbb{C}(V) \) (for \(1 \leq k \leq d - 1 \)), so it follows that \(\mathcal{L}_k \) is simple (but not absolutely simple) and it follows from (4.6)
\[
\text{Irr}(\text{Gau}(W, c)) = \{ \mathcal{E}_{1}^\text{Gau}, \mathcal{E}_{s}^\text{Gau}, \mathcal{L}_1^\text{Gau} \}.
\]

Moreover, the list of \(c \)-cellular characters is given in this case by
\[
\text{(4.8)} \quad 1_W, \quad \varepsilon \quad \text{and} \quad \sum_{k=1}^{(d-1)/2} \chi_k.
\]

Second case: assume that \(d \) is even. — In this case, it is easily checked that \(\mathcal{E}_{1}^\text{Gau}, \mathcal{E}_{s}^\text{Gau}, \mathcal{E}_{t}^\text{Gau} \) and \(\mathcal{E}_{s}^\text{Gau} \) are four non-isomorphic simple \(\text{Gau}(W, c) \)-modules. Also, if \(1 \leq k \leq d - 1 \), then
\[
\mathcal{L}_k \sim \mathcal{E}_{s}^\text{Gau} \oplus \mathcal{E}_{t}^\text{Gau},
\]

by (4.6). Therefore,
\[
\text{Irr}(\text{Gau}(W, c)) = \{ \mathcal{E}_{1}^\text{Gau}, \mathcal{E}_{s}^\text{Gau}, \mathcal{E}_{t}^\text{Gau} \}.
\]

and the list of \(c \)-cellular characters is given in this case by
\[
\text{(4.10)} \quad 1_W, \quad \varepsilon, \quad \varepsilon_s + \sum_{k=1}^{(d-2)/2} \chi_k \quad \text{and} \quad \varepsilon_t + \sum_{k=1}^{(d-2)/2} \chi_k.
\]
4.D. The opposite parameters case. — We assume here, and only here, that $b = -a \neq 0$. This forces d to be even. Then, using the automorphism of H induced by the linear character e_s (see [BoRo, §3.5.B]), one can pass from the equal parameter case to the opposite parameter case by tensorizing by e_s. Therefore, the list of c-cellular characters is given in this case by

\begin{equation}
(4.11) \quad e_s, \quad e_t, \quad 1_W + \sum_{k=1}^{(d-2)/2} \chi_k \quad \text{and} \quad e + \sum_{k=1}^{(d-2)/2} \chi_k.
\end{equation}

4.E. The generic case. — We assume here, and only here, that $ab(a^2 - b^2) \neq 0$ (so that we are not in the cases covered by the previous subsections). Note that this forces d to be even. We will prove that the list of c-cellular characters is given in this case by

\begin{equation}
(4.12) \quad 1_W, \quad e, \quad e_s, \quad e_t \quad \text{and} \quad \sum_{k=1}^{(d-2)/2} \chi_k.
\end{equation}

Proof. — We have, for $1 \leq k \leq e-1$,

\[
\rho_k(D'_X) = \frac{X^d - Y^d}{d}(a \sum_{i \in \mathbb{Z}/e} \frac{1}{X - \zeta^{2ki}} \begin{pmatrix}
0 & \zeta^{2ki} \\
\zeta^{-2ki} & 0
\end{pmatrix} + b \sum_{i \in \mathbb{Z}/e} \frac{1}{X - \zeta^{2i+1}} \begin{pmatrix}
0 & \zeta^{k(2i+1)} \\
\zeta^{-(2i+1)} & 0
\end{pmatrix}).
\]

So it follows from (1.12), (1.13) and (1.14) that

\[
\rho_k(D'_X) = \frac{1}{2} \begin{pmatrix} 0 & X^{k-1}Y^{e-k}((a-b)X^e + (a+b)Y^e) \\
X^{e-k-1}Y^k((a+b)X^e + (a-b)Y^e) & 0 \end{pmatrix}.
\]

The matrix $\rho_k(D'_X)$ can be computed similarly and we can deduce that,

\[
\forall 1 \leq k \leq e-2, \quad D \in \text{Gau}(W, c), \quad M \rho_k(D) M^{-1} = \rho_{k+1}(D).
\]

Therefore,

\begin{equation}
(4.13) \quad \forall 1 \leq k \leq e-2, \quad Z_k^{\text{Gau}} \cong Z_{k+1}^{\text{Gau}}.
\end{equation}

Moreover,

\[
-\det(\rho_k(D'_X)) = \frac{1}{4} X^{e-2} Y^e (a-b)X^e + (a+b)Y^e)^2 (a-b)X^e + (a+b)Y^e).
\]

Since $ab(a^2 - b^2) \neq 0$, $-\det(\rho_k(D'_X))$ is not a square in $\mathbb{C}(V)$, and so Z_k^{Gau} is simple (but not absolutely simple) for $1 \leq k \leq e-1$.

Moreover, an easy computation shows that $e_1^{\text{Gau}}, e_e^{\text{Gau}}, e_s^{\text{Gau}}$ and e_t^{Gau} are pairwise non-isomorphic simple $\text{Gau}(W, c)$-modules. So it follows from (4.13) that

\[
\text{Irr}(\text{Gau}(W, c)) = \{ e_1^{\text{Gau}}, e_e^{\text{Gau}}, e_s^{\text{Gau}}, e_t^{\text{Gau}} \}
\]

and that (4.12) holds. \qed
Parameters

\[
\begin{align*}
&d = 2e \text{ (even)} & &d = 2e - 1 \text{ (odd)} \\
&a = b = 0 & &\sum_{\chi \in \text{Irr}(W)} \chi(1) & &\sum_{\chi \in \text{Irr}(W)} \chi(1) \\
&a \neq b = 0 & &1_W + \epsilon_t, \epsilon_s + \epsilon & &\sum_{k=1}^{e-1} \chi_k \\
&a = 0 \neq b & &1_W + \epsilon_s, \epsilon_t + \epsilon & &\sum_{k=1}^{e-1} \chi_k \\
&a = b \neq 0 & &1_W, \epsilon, \epsilon_s + \sum_{k=1}^{e-1} \chi_k, \epsilon_t + \sum_{k=1}^{e-1} \chi_k & &1_W, \epsilon, \sum_{k=1}^{e-1} \chi_k \\
&a = -b \neq 0 & &\epsilon_s, \epsilon_t, 1_W + \sum_{k=1}^{e-1} \chi_k, \epsilon + \sum_{k=1}^{e-1} \chi_k & \text{ (omitted)} \\
&ab(a^2 - b^2) \neq 0 & &1_W, \epsilon_s, \epsilon_t, \epsilon & &\sum_{k=1}^{e-1} \chi_k \\
\end{align*}
\]

Table 4.14. Calogero-Moser cellular characters of \(W \)

4.F. Conclusion. — The following Table 4.14 gathers all the possible list of cellular characters of \(W \), according to the values of the parameters \(a \) and \(b \).

Remark 4.15. — Whenever \(a, b \in \mathbb{R} \), the Kazhdan-Lusztig cellular characters for the dihedral groups are easily computable (see for instance [Lus]) and a comparison with Table 4.14 shows that they coincide with Calogero-Moser cellular characters: this is [BoRo, Conjecture CAR] for dihedral groups.

5. Calogero-Moser families

The aim of this section is to compute the Calogero-Moser \(c \)-families of \(W \) (as defined in [BoRo, §9.2]) for all values of \(c \). The result is given in Table 5.2. Note that this result is not new: the Calogero-Moser families have been computed by Bellamy in his thesis [Bel1]. We provide here a different proof, which uses the computation of Calogero-Moser cellular characters.
5.A. Families. — To any irreducible character χ, Gordon [Gor] associates a simple H_c-module $\mathcal{L}_c(\chi)$ (we follow the convention of [BoRo, Proposition 9.1.3]). We denote by $\Omega_c^\chi : Z \to \mathbb{C}$ the morphism defined by the following property: if $z \in Z$, then $\Omega_c^\chi(z)$ is the scalar by which z acts on $\mathcal{L}_c(\chi)$ (by Schur’s Lemma). We say that two irreducible characters χ and χ' belong to the same Calogero-Moser c-family if $\Omega_c^\chi = \Omega_c^{\chi'}$ (see [Gor] or [BoRo, Lemma 9.2.3]); note that Calogero-Moser families are called Calogero-Moser blocks in [Gor]). We give here a different proof of a theorem of Bellamy [Bel1]:

Theorem 5.1 (Bellamy). — Let $c \in \mathcal{C}$ and let χ and χ' be two irreducible characters of W. Then χ and χ' lies in the same Calogero-Moser families if and only if $\Omega_c^\chi(\text{eu}) = \Omega_c^{\chi'}(\text{eu})$. Consequently, the Calogero-Moser families are given by Table 5.2.

Proof. — By [BoRo, Proposition 7.3.2], the values of $\Omega_c^\chi(\text{eu})$ are given as follows:

(a) If $d = 2e - 1$ is odd, then

$$\begin{align*}
\Omega_{1_w}^c(\text{eu}) &= da, \\
\Omega_{\chi}^c(\text{eu}) &= -da, \\
\Omega_{\chi_Z}^c(\text{eu}) &= 0 & &\text{if } 1 \leq k \leq e - 1.
\end{align*}$$

(b) If $d = 2e$ is even, then

$$\begin{align*}
\Omega_{1_w}^c(\text{eu}) &= e(a + b), \\
\Omega_{\chi}^c(\text{eu}) &= -e(a + b), \\
\Omega_{\chi_Z}^c(\text{eu}) &= e(b - a), \\
\Omega_{\chi_{Z_k}}^c(\text{eu}) &= 0 & &\text{if } 1 \leq k \leq e - 1.
\end{align*}$$

But two irreducible characters occurring in the same Calogero-Moser c-cellular character necessarily belong to the same Calogero-Moser c-family [BoRo, Proposition 11.4.2]. So the Theorem follows from (a), (b) and Table 4.14. □

Remark 5.3. — Whenever $a, b \in \mathbb{R}$, the Kazhdan-Lusztig families for the dihedral groups are easily computable (see for instance [Lus]) and a comparison with Table 5.2: this is [BoRo, Conjecture FAM] for dihedral groups. Note that this was already proved by Bellamy [Bel1].

5.B. Cuspidal families. — Recall that the algebras Z and Z_c are endowed with a Poisson bracket $\{,\}$. This Poisson structure has been used by Bellamy [Bel2] to define the notion of *cuspidal* Calogero-Moser families. If \mathcal{F} is a Calogero-Moser c-family, we set $m_{\mathcal{F}} = \text{Ker}(\Omega_{\chi}^c) \subset Z_c$ (note that Ω_{χ}^c factorizes through the projection $Z \to Z_c$). The Calogero-Moser c-family \mathcal{F} is called *cuspidal* if $\{m_{\mathcal{F}}, m_{\mathcal{F}}\} \subset m_{\mathcal{F}}$. They have been determined for most of the Coxeter groups by Bellamy and Thiel [BeTh]. In our case, we recall here their result, as well as a proof for the sake of completeness.

Proposition 5.4. — The list of cuspidal Calogero-Moser families is given by Table 5.5. The following properties hold:

(a) A Calogero-Moser family \mathcal{F} is cuspidal if and only if $|\mathcal{F}| \geq 2$ and $\chi_1 \in \mathcal{F}$ (and then $\chi_k \in \mathcal{F}$ for all $1 \leq k < d/2$).
Parameters	$d = 2e$ (even)	$d = 2e - 1$ (odd)
$a = b = 0$ | $\text{Irr}(W)$ | $\text{Irr}(W)$

(a) There is at most one cuspidal family. If $d \geq 5$, there is always exactly one cuspidal family.

(b) There is at most one cuspidal family. If $d \geq 5$, there is always exactly one cuspidal family.

Proof. — The main (easy) observation is that $\{q, Q\} = eu$. This implies that, if χ belongs to a cuspidal families, then $\Omega^c_\chi(eu) = 0$. Since it follows from Table 5.2 that the Calogero-Moser c-families are determined by the values of $\Omega^c_\chi(eu)$, this implies that there is at most one cuspidal Calogero-Moser c-family, and that it must contain χ_1 (and χ_k, for $1 \leq k < d/2$).

Also, since a Calogero-Moser c-family of cardinality 1 cannot be cuspidal [Gor], this shows the “only if” part of (a). It remains to prove the “if” part of (a). So assume that $\chi_1 \in F$ and that $|F| \geq 2$. By Bellamy theory [Bel2], there exists a non-trivial parabolic subgroup W' of W and a cuspidal Calogero-Moser c'-family F' of W' (here, c' denotes the restriction of c to $\text{Ref}(W')$) which are associated with F. Again, by [Bel2], $|F| = |F'|$. We must show that $W = W'$. So assume that $W' \neq W$. Then $|W'| = 2$ and so $|F'| \leq 2$ and c' must be equal to 0. This forces $|F| = 2$ and $ab = 0$ (and $c \neq 0$). This can only occur in type G_2: but the explicit computation of the Poisson bracket in type G_2 shows that F is necessarily cuspidal.

\[\square\]
If \mathcal{F} is a cuspidal Calogero-Moser c-family, then the Poisson bracket $\{\cdot,\cdot\}$ stabilizes the maximal ideal $m^{c}_{\mathcal{F}}$ and so it induces a Lie bracket $\lbrack\cdot,\cdot\rbrack$ on the cotangent space $\mathfrak{Lie}_{c}(\mathcal{F}) = m_{c}^{c}/(m^{c}_{\mathcal{F}})^{2}$. It is a question to determine in general the structure of this Lie algebra. We would like to emphasize here the following two particular intriguing examples (a proof will be given in §8, using explicit computations).

Theorem 5.6. — Let \mathcal{F} be a cuspidal Calogero-Moser c-family of W. Then:

(a) If $d = 4$ (i.e. if W is of type B_{2}) and $a = b \neq 0$, then $\mathfrak{Lie}_{c}(\mathcal{F}) \cong \mathfrak{sl}_{3}(\mathbb{C})$ is a simple Lie algebra of type A_{2}.

(b) If $d = 6$ (i.e. if W is of type G_{2}) and $ab(a^2 - b^2) \neq 0$, then $\mathfrak{Lie}_{c}(\mathcal{F}) \cong \mathfrak{sp}_{4}(\mathbb{C})$ is a simple Lie algebra of type B_{2}.

6. Calogero-Moser cells

Let $c \in \mathcal{F}$. The main theme of [BoRo] is a construction of partitions of W into Calogero-Moser left, right and two-sided c-cells, using a Galois closure M of the field extension $\text{Frac}(\mathbb{Z})/\text{Frac}(P)$. Let G denote the Galois group of the field extension $M/\text{Frac}(P)$: the
Calogero-Moser cells are defined [BoRo, Definition 6.1.1] as orbits of particular subgroups of G. Our aim in this section is to prove [BoRo, Conjectures L and LR] whenever d is odd. We first start by trying to determine the Galois group G.

It is proved in [BoRo, §5.1.C] that there is an embedding $G \hookrightarrow \mathfrak{S}_W$ (here, \mathfrak{S}_W denotes the symmetric group on the set W, and we identify G with its image) such that

$$ι(W \times W) \subset G,$$

where $ι : W \times W \rightarrow \mathfrak{S}_W$ denotes the morphism obtained by letting $W \times W$ act by left and right translations ($(x, y)z = xzy^{-1}$). Let \mathfrak{A}_W denote the alternating group on W.

Theorem 6.1. — If d is odd, then $G = \mathfrak{S}_W$.

Proof. — We first prove an easy lemma about finite permutation groups.

Lemma 6.2. — Let $Γ$ be a subgroup of \mathfrak{S}_W. We assume that:

1. d is odd;
2. $Γ$ contains $ι(W \times W)$;
3. $Γ$ is primitive.

Then $Γ = \mathfrak{S}_W$.

Proof of Lemma 6.2. — Since d is odd, the action of $σ = ι(c, c)$ on W is a cycle of length d (it fixes $\langle c \rangle$ and acts by a cycle on $W \setminus \langle c \rangle$ by (1.1)). Moreover, $ι(c, 1)$ and $ι(1, c)$ belong to the centralizer of $ι(c, c)$ in $Γ$, so $C_Γ(ι(c, c)) ≠ \langle c \rangle$.

Since $Γ$ is primitive, it follows from [DiMo, Exercise 7.4.12] that $Γ = \mathfrak{S}_W$ or \mathfrak{A}_W.

But note that the action of $ι(s, 1)$ is a product of d transpositions, so it is an odd permutation (because d is odd). Therefore, $Γ ≠ \mathfrak{A}_W$ and the Lemma is proved.

Assume that d is odd. By the description of the Calogero-Moser c-families given in Table 5.2, it follows from [BoRo, Theorem 10.2.7] that there exists a subgroup I of G which have three orbits for its action on W, of respective lengths 1, 1 and $2d − 2$. Since $ι(W \times W)$ is transitive on W, G is also transitive and we may assume that one of the two orbits of length 1 is the singleton $\{1\}$. Let $ΔW$ denotes the diagonal in $W \times W$. Its action on W is by conjugacy: it has only one fixed point (because the center of W is trivial). This proves that the subgroup $⟨I, ι(ΔW)⟩$ acts transitively on $W \setminus \{1\}$. So G is 2-transitive and, in particular, primitive. The Theorem now follows from Lemma 6.2 above.

Corollary 6.3. — If d is odd, then the Conjectures [BoRo, Conjectures LR and L] hold.
Proof. — Assume that \(c_s \in \mathbb{R} \) for all \(s \in \text{Ref}(W) \). The computation of Calogero-Moser \(c \)-families and \(c \)-cellular characters shows that, if we choose randomly two prime ideals as in [BoRo, Chapter 15], then the associated Calogero-Moser two-sided or left \(c \)-cells have the same sizes as the Kazhdan-Lusztig two-sided or left \(c \)-cells respectively (see [BoRo, Chapters 10 and 11]). Since the Galois group \(G \) coincides with \(S_W \), we can manage to change the prime ideals so that Calogero-Moser and Kazhdan-Lusztig \(c \)-cells coincide. \(\Box \)

Remark 6.4. — Let
\[
\mathcal{S}^B_W = \{ \sigma \in \mathcal{S}_W \mid \forall w \in W, \sigma(w_0 w) = w_0 \sigma(w) \}
\]
and
\[
\mathcal{S}^D_W = \mathcal{S}^B_W \cap \mathfrak{A}_W.
\]

Note that, in our case, \(\mathcal{S}^B_W \) (respectively \(\mathcal{S}^D_W \)) is a Weyl group of type \(B_d \) (respectively \(D_d \)) and that \(\mathcal{S}^D_W \) is a normal subgroup of \(\mathcal{S}^B_W \) of index 2.

Assume here, and only here, that \(d \) is even. It then follows from [BoRo, Proposition 5.5.2] that \(G \subset \mathcal{S}^B_W \). We would bet a few euros (but not more) that \(G = \mathcal{S}^D_W \). This has been checked for \(d = 4 \) in [BoRo, Theorem 19.6.1] and it will be checked in 8.12 whenever \(d = 6 \). Let us just prove a few general facts.

First, let \(\bar{W} = W/Z(W) \) (it is a dihedral group of order \(d \)) and let \(i : \bar{W} \times \bar{W} \to \mathcal{S}_{\bar{W}} \) denote the morphism induced by the action by left and right translations. Let \(\bar{G} \) denote the image of \(G \) in \(\mathcal{S}_{\bar{W}} \) (indeed \(G \subset \mathcal{S}^B_W \) and there is a natural morphism \(\mathcal{S}^B_W \to \mathcal{S}_{\bar{W}} \)). Then, if \(a = b \neq 0 \), the Calogero-Moser two-sided \(c \)-cells have cardinalities 1, 1 and \(2d - 2 \) (by [BoRo, Theorem 10.2.7]) so it follows from the definition of Calogero-Moser cells that there exists a subgroup \(I_1 \) of \(G \) whose orbits have cardinalities 1, 1 and \(2d - 2 \). Therefore, the image \(\bar{I}_1 \) of \(I_1 \) in \(\bar{G} \) have orbits of cardinalities 1, 1 and \(d - 1 \). Consequently, \(\bar{G} \) is 2-transitive. Similarly, taking \(c \) such that \(a b(a^2 - b^2) \neq 0 \), we get that there is a subgroup \(\bar{I}_2 \) of \(\bar{G} \) whose orbits have cardinalities 1, 1 and \(d - 2 \). Therefore,

\[
\bar{G} \text{ is 3-transitive.}
\]

On the other hand,
\[
\bar{G} \text{ contains } i(\bar{W} \times \bar{W}).
\]

As a consequence, we get
\[
\text{If } d/2 \text{ is odd, then } \bar{G} = \mathcal{S}_{\bar{W}}.
\]

Indeed, this follows from Lemma 6.2. \(\blacksquare \)

7. Fixed points

The \(\mathbb{Z} \)-grading on the \(C \)-algebra \(H \) (defined in Remark 3.4) induces an action of the group \(C^* \) on \(H \) as follows [BoRo, §3.5.A]. If \(\xi \in C^* \) then:

- If \(y \in V \), then \(\xi y = \xi^{-1} y \).
- If \(x \in V^* \), then \(\xi x = \xi x \).
- If \(w \in W \), then \(\xi w = w \).
- If \(s \in \text{Ref}(W) \), then \(\xi C_s = C_s \).
So the center Z inherits an action of \mathbb{C}^\times, which may be viewed as a \mathbb{C}^\times-action on the Calogero-Moser space \mathcal{Z}, which stabilizes all the fibers \mathcal{Z}_c (for $c \in \mathcal{C}$).

Now, if $m \in \mathbb{N}^+$, we denote by μ_m the group of m-th root of unity in \mathbb{C}^\times. In [BoRo, Conjecture FIX], R. Rouquier and the author conjecture that all the irreducible components of the fixed point variety \mathcal{Z}^{μ_m} are isomorphic to the Calogero-Moser space of some other complex reflection groups (here, \mathcal{Z}^{μ_m} is endowed with its reduced structure). This conjecture will be checked for $d \in \{3, 4, 6\}$ and any m in Section 8.

Theorem 7.1. — Assume that d is odd. Then

$$\mathcal{Z}^{\mu_d} \simeq \{(a, u, v, e) \in \mathbb{C}^4 \mid (e - da)(e + da)e^{d-2} = uv\}.$$

Remark 7.2. — By [BoRo, Theorem 18.2.4], the above Theorem shows that \mathcal{Z}^{μ_d} is isomorphic to the Calogero-Moser space associated with the cyclic group of order d and some parameters, so it proves [BoRo, Conjecture FIX] in this case. ■

Proof. — The case where $d = 1$ is not interesting, so we assume that $d \geq 3$. Let \mathcal{J} denote the ideal of Z generated by $\{x^2 - z \mid z \in Z\}$. Then the algebra of regular functions on \mathcal{Z}^{μ_d} is $Z/\sqrt{\mathcal{J}}$. We will describe Z/\mathcal{J}, and this will prove that $\mathcal{J} = \sqrt{\mathcal{J}}$ in this case. Therefore,

$$\mathcal{J} = \langle q, Q, a_1, a_2, \ldots, a_{d-1} \rangle,$$

and so Z/\mathcal{J} is generated by the images of A, r, R and eu. In the quotient Z/\mathcal{J}, all the equations of Z-degree which is not divisible by d are automatically fulfilled, so it only remains the equations $(Z_{i,d-i})$ (which is bi-homogeneous of d-degree (d,d)). Also, note that $(Z_{i,d-i})$ implies that

$$eu^d = rR \mod (\mathcal{J}, A).$$

The only bi-homogeneous monomials in A, r, R and eu of bi-degree (d,d) are rR and the $eu^k A^{d-k}$ (for $0 \leq k \leq d$). Therefore, the above equation implies that there exist complex numbers $\lambda_0, \ldots, \lambda_{d-1}$ such that

$$(*) \quad eu^d + \lambda_{d-1} A eu^{d-1} + \cdots + \lambda_1 A^{d-1} eu + \lambda_0 A^d \equiv rR \mod \mathcal{J}.$$

On the other hand, it follows from [BoRo, Corollary 9.4.4] that

$$\langle eu - dA \rangle (eu + dA) eu^{d-2} = \prod_{\chi \in \text{irr}(W)} (eu - \Omega_\chi(eu))^{\chi(1)/d} \equiv 0 \mod \langle q, Q, r, R \rangle.$$

So $(*)$ implies that the polynomial $t^d + \lambda_{d-1} A t^{d-1} + \cdots + \lambda_1 A^{d-1} t + \lambda_0 A^d$ divides $(t - dA)(t + dA) t^{d-2}$ in $\mathbb{C}[A][t]$.

Since all the C_2^\times-fixed points belong to \mathcal{Z}^{μ_d}, this implies that $t - dA$ and $t + dA$ both divide $t^d + \lambda_{d-1} A t^{d-1} + \cdots + \lambda_1 A^{d-1} t + \lambda_0 A^d$. Therefore,

$$t^d + \lambda_{d-1} A t^{d-1} + \cdots + \lambda_1 A^{d-1} t + \lambda_0 A^d = (t - dA)(t + dA) t^{d-2},$$

and so there remains only one relations in the quotient Z/\mathcal{J}, namely

$$\langle eu - dA \rangle (eu + dA) eu^{d-2} \equiv rR \mod \mathcal{J},$$

as desired. ■
8. Examples

We are interested here in the cases where \(d \in \{3, 4, 6\} \). This are the Weyl groups of rank 2 (of type \(A_2, B_2 \) or \(G_2 \)). For each of these cases, we give a complete presentation of the centre \(Z \) of \(H \) (using the algorithms developed in [BoTh]). We use these explicit computations to check some of the facts that have been stated earlier in this paper. Most of the computations are done using MAGMA [Mag].

8.A. The type \(A_2 \). — We work here under the following hypothesis:

We assume in this subsection, and only in this subsection, that \(d = 3 \). In other words, \(W \) is a Weyl group of type \(A_2 \).

Using MAGMA and [BoTh], we can compute effectively the generators of the \(\mathbb{C}[\mathfrak{c}] \)-algebra \(Z \) and we obtain the following presentation for \(Z \) (note that \(\mathbb{C}[\mathfrak{c}] = \mathbb{C}[A] \) because \(A = B \)):

Proposition 8.1. — The \(\mathbb{C}[A] \)-algebra \(Z \) admits the following presentation:

\[
\begin{align*}
\text{Generators:} & \quad q, r, Q, R, \mathfrak{e}u, a_1, a_2 \\
& \quad \begin{cases}
\mathfrak{e}u \ a_1 = q \ a_2 + r Q \\
\mathfrak{e}u \ a_2 = Q \ a_1 + q R
\end{cases} \\
\text{Relations:} & \quad \begin{cases}
a_1^2 = 4 q^2 Q + r \ a_2 - q \ \mathfrak{e}u^2 + 9 A^2 \ q \\
a_2 = 4 q Q + r R - \mathfrak{e}u^3 + 9 A^2 \ \mathfrak{e}u \\
a_2 = 4 q Q^2 + R \ a_1 - Q \ \mathfrak{e}u^3 + 9 A^2 \ Q
\end{cases}
\end{align*}
\]

The minimal polynomial of \(\mathfrak{e}u \) is given by

\[
\begin{align*}
t^6 & - (6 q Q + 9 A^2) \ t^4 - r R \ t^3 + 9 (q^2 Q^2 + 2 A^2 q Q) \ t^2 \\
& + 3 q r Q R \ t + q^3 R^2 + r^2 Q^3 - 4 q^3 Q^3 - 9 A^2 q^2 Q^2.
\end{align*}
\]

We conclude by proving [BoRo, Conjecture FIX] in this case (about the variety \(\mathcal{Z}^{H_m} \)). Note that the only interesting case is where \(m \) divides the order of an element of \(W \). So \(m \in \{1, 2, 3\} \). The case \(m = 1 \) is stupid while the case \(m = 3 \) is treated in Theorem 7.1:

Proposition 8.3. — The \(\mathbb{C}[A] \)-algebra \(\mathbb{C}[\mathcal{Z}_{\mathcal{E}}] \) admits the following presentation:

\[
\begin{align*}
\text{Generators:} & \quad q, Q, \mathfrak{e}u \\
& \quad \begin{cases}
q(\mathfrak{e}u^2 - 9 A^2 - 4 q Q) = 0, \\
\mathfrak{e}u(\mathfrak{e}u^2 - 9 A^2 - 4 q Q) = 0, \\
Q(\mathfrak{e}u^2 - 9 A^2 - 4 q Q) = 0,
\end{cases} \\
\text{Relations:} & \quad \begin{cases}
\end{cases}
\end{align*}
\]

In particular, if \(a \neq 0 \), then the variety \(\mathcal{Z}_{\mathcal{E}}^{H_m} \) has two irreducible components:

(1) A component of dimension 2 defined by the equation \(\mathfrak{e}u^2 - 9 a^2 - 4 q Q = 0 \) (which contains the points \(z_1 \) and \(z_2 \)).

(2) An isolated point, which is equal to \(z_{A_1} \).
8.B. The type B_2. — We work here under the following hypothesis:

We assume in this subsection, and only in this subsection, that $d = 4$. In other words, W is a Weyl group of type B_2.

Using MAGMA and [BoTh], we can compute effectively the generators of the $\mathbb{C}[\mathfrak{e}]$-algebra Z and we obtain the following presentation for Z (note that $A \neq B$):

Proposition 8.4. — The $\mathbb{C}[A, B]$-algebra Z admits the following presentation:

\[
\begin{aligned}
\text{Generators:} & \quad q, r, Q, R, \epsilon u, a_1, a_2, a_3 \\
\epsilon u a_1 &= q a_2 + r Q - 2(A^2 - B^2) q \\
\epsilon u a_2 &= a_2 + Q a_1 - 2(A^2 - B^2) \epsilon u \\
\epsilon u a_3 &= q R + Q a_2 - 2(A^2 - B^2) Q a_2 + r(Q^2 + 2(A^2 - B^2) R) + 8(A^2 + B^2) q^2 a_2 \\
\epsilon a_3 &= r R \epsilon u + 4 q Q \epsilon u^2 - 2 q^2 Q^2 - 4 (A^2 - B^2) a_2 + 8 (A^2 + B^2) a_2 \\
\epsilon a_2 &= r R \epsilon u + 4 q Q \epsilon u^2 - 2 q^2 Q^2 - 4 (A^2 - B^2) a_2 + 8 (A^2 + B^2) a_2 \\
\epsilon a_1 &= R a_1 - Q \epsilon u^3 + 4 q Q^2 \epsilon u + 2 (A^2 - B^2) a_1 + 8 (A^2 + B^2) Q \epsilon u \\
\epsilon a_0 &= R a_2 - 2 Q^2 \epsilon u^3 + 4 q Q^3 + 2 (A^2 - B^2) R + 8 (A^2 + B^2) Q^2 \\
\end{aligned}
\]

Now, let

\[f_4(t) = t^4 - 8(q Q + A^2 + B^2) t^3 + (20 q^2 Q^2 - r R + 32 (A^2 + B^2) q Q + 16 (A^2 - B^2)^2) t^2 - 4 (4 q^3 Q^3 - q R Q + 2 (A^2 - B^2) (q^2 Q + R Q^2) + 8 (A^2 + B^2) q^2 Q^2) t + (q^2 R - r Q^2)^2.\]

Then

\[(8.5) \quad \text{The minimal polynomial of } \epsilon u \text{ is } f_4(t^2).\]

8.B.1. Cuspidal point. — We aim to prove here Theorem 5.6(a). By Table 5.9, there is a cuspidal point in \mathcal{Z}_e if and only if $a^2 = b^2$. Using the automorphism of \mathcal{H} (and so, of Z) induced by the linear character ϵ_s (see [BoRo, §3.5.B]), we may reduce to the case where $a = b$.

Then there is only one cuspidal family \mathcal{F} in \mathcal{Z}_e (the one containing χ_1). It is easily checked that $m_{\mathcal{F}}^2 = (q, r, Q, R, \epsilon u, a_1, a_2, a_3)_{\mathcal{Z}_e}$ and it is readily checked from the presentation given in Proposition 8.4 that the cotangent space $\Omega_{\mathcal{Z}_e}(\mathcal{F}) = m_{\mathcal{F}}^2/(m_{\mathcal{F}}^2)^2$ has dimension 8: so a basis is given by the images $q, r, Q, R, \epsilon u, a_1, a_2, a_3$ of $q, r, Q, R, \epsilon u, a_1, a_2, a_3$ respectively.

The computation of the Poisson bracket can be done using the MAGMA package CHAMP: writing the result modulo $m_{\mathcal{F}}^2$ gives the Lie bracket on $\Omega_{\mathcal{Z}_e}(\mathcal{F})$. We can then deduce that:
Table 8.7. Definition of \mathfrak{K}_c for $d = 4$

Proposition 8.6. — Assume here that $a = b$. The linear map \mathfrak{K}_c defined in Table 8.7 is a morphism of Lie algebras. It is an isomorphism if $a \neq 0$.

8.B.2. Fixed points. — The next result follows immediately from the presentation given in Proposition 8.4:

Proposition 8.8. — The $C[A, B]$-algebra $C[\mathfrak{T}_{4b}]$ admits the following presentation:

\[
\begin{align*}
\text{Generators:} & \quad r, R, \textbf{e}u, a_2 \\
\text{Relations:} & \quad \textbf{e}u (a_2 + 2(A^2 - B^2)) = 0 \\
& \quad r (a_2 + 2(A^2 - B^2)) = 0 \\
& \quad R (a_2 + 2(A^2 - B^2)) = 0 \\
& \quad (a_2 - 2(A^2 - B^2))(a_2 + 2(A^2 - B^2)) = 0 \\
& \quad (\textbf{e}u - 2(A + B))[(\textbf{e}u + 2(A + B))(\textbf{e}u - 2(A - B))(\textbf{e}u + 2(A - B))] \\
& \quad = rR + 4(A^2 - B^2)(a_2 + 2(A^2 - B^2))
\end{align*}
\]

In particular:

(a) If $a^2 = b^2$, then \mathfrak{T}_{4b} is irreducible and is equal to

\[\{(e, u, v) \in C^3 \mid (e - 4a)(e + 4a)e^2 = uv\}\].

(b) If $a^2 \neq b^2$, then \mathfrak{T}_{4b} has two irreducible components:

(b1) The one of maximal dimension which is equal to

\[\{(e, u, v) \in C^3 \mid (e - 2(a + b))(e + 2(a + b))(e - 2(a - b))(e + 2(a - b)) = uv\}\],

and which contains z_1, z_2, z_3, and z_4.

(b2) An isolated point (corresponding to the maximal ideal \(\langle r, \textbf{e}u, a_2 - 2(a^2 - b^2) \rangle\)), which is equal to z_{λ_1}.
8.C. The type G_2. — We work here under the following hypothesis:

We assume in this subsection, and only in this subsection, that $d = 6$. In other words, W is a Weyl group of type G_2.

Using MAGMA and [BoTh], we can compute effectively the generators of the $\mathbb{C}[\mathcal{G}]$-algebra Z and we obtain the following presentation for Z (note that $A \neq B$):

Proposition 8.9. — The $\mathbb{C}[A, B]$-algebra Z admits the following presentation:

$$\begin{align*}
\text{Generators:} & \quad r, R, \mathbf{e}u, \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 \\
\text{Relations:} & \quad \text{see Table } 8.10
\end{align*}$$

Now, let

$$f_6(t) = t^6 - 6(2qQ + 3(A^2 + B^2)) t^4 + 9(6q^2Q^2 + 16(A^2 + B^2)qQ + 9(A^2 - B^2)^2) t^4$$

$$- (rR + 112q^3 + 396(A^2 + B^2)qQ^2 + 324(A^2 - B^2)^2) qQ) t^4$$

$$+ 3(2rqRQ + 35q^4Q^4 + 4(A^2 - B^2)(rQ^3 + q^3)R + 144(A^2 + B^2)q^3Q^3 + 162(A^2 - B^2)^2) qQ^2) t^4$$

$$- 9(r^2q^2RQ^2 + 4q^4RQ^4 - 4(A^2 - B^2)(rQ^3 + q^3)RQ + 18(A^2 + B^2)q^4Q^4 + 36(A^2 - B^2)^2) qQ^2) t^4$$

$$+ (rQ^3 + q^3R - 9(A^2 - B^2)qQ^2)^2$$

Table 8.10. Presentation of Z whenever $d = 6$
Then

\[(8.11) \quad \text{the minimal polynomial of } \mathfrak{eu} \text{ is } f_0(t^2).\]

8.C.1. Galois group. — Since \(f_0(0) \) is a square in \(P \), it follows from [BoRo, (B.6.1)] that the discriminant of \(f_0(t^2) \) is a square in \(P \). Therefore, the Galois group \(G \) of the polynomial \(f_0(t) \) is contained in \(\mathfrak{S}_W \). Moreover, it follows from Remark 6.4 that \(G \) is contained in \(\mathfrak{S}^D_W \). Therefore, \(G \subset \mathfrak{S}^D_W \). In fact,

\[(8.12) \quad G = \mathfrak{S}^D_W.\]

Proof. — Let \(G_1 \) denote the stabilizer of \(1 \in W \) in \(G \subset \mathfrak{S}_W \). By the computation of Calogero-Moser families, \(G_1 \) contains a subgroup admitting an orbit of cardinality 10 (case \(a = b \neq 0 \)). Consequently:

1. \(G_1 \) contains a subgroup admitting an orbit of cardinality 10.
2. \(G \) contains \(t(W \times W) \).

An easy computation with the software GAP 4 [GAP] shows that the only subgroup \(G \) of \(\mathfrak{S}^D_W \) satisfying (1) and (2) is \(\mathfrak{S}^D_W \).

8.C.2. Fixed points. — The next result follows immediately from the presentation given in Proposition 8.9:

Proposition 8.13. — The \(\mathbb{C}[A,B] \)-algebra \(\mathbb{C}[Z^m] \) admits the following presentation:

\[
\begin{align*}
\text{Generators:} & \quad r, R, \mathfrak{eu} \\
\text{Relation:} & \quad (\mathfrak{eu} - 3(A + B))(\mathfrak{eu} + 3(A + B))(\mathfrak{eu} - 3(A - B))(\mathfrak{eu} + 3(A - B))\mathfrak{eu}^2 = r R
\end{align*}
\]

This proves [BoRo, Conjecture FIX] in this case.

8.C.3. Lie algebra at cuspidal point. — Recall from Proposition 5.4 that there is a unique cuspidal Calogero-Moser \(c \)-family \(\mathcal{F} \): it is the one which contains \(\chi_1 \) (this fact does not depend on the parameter \(c \); however, the cardinality of \(\mathcal{F} \) depends on the parameter). It corresponds to the maximal ideal \(m = (q, r, Q, R, \mathfrak{eu}, a_1, a_2, a_3, a_4, a_5) \) of \(Z_c \). It follows from the presentation of \(Z \) given by Proposition 8.9 that the cotangent space \(\mathfrak{Lie}_c(\mathcal{F}) = m^c_P/(m^c_P)^2 \) has dimension 10 (a basis is given by the images \(q, r, Q, R, \mathfrak{eu}, a_1, a_2, a_3, a_4, a_5 \) of \(q, r, Q, R, \mathfrak{eu}, a_1, a_2, a_3, a_4, a_5 \) in \(m \) respectively). The Poisson bracket (and so the Lie bracket in \(\mathfrak{Lie}(\mathcal{F}) \)) can then be computed explicitly using the MAGMA package CHAMP. We can then deduce the following result:

Proposition 8.14. — Let \(\Phi_c : \mathfrak{Lie}_c(\mathcal{F}) \rightarrow \mathfrak{sp}_4(\mathbb{C}) \) be the linear map defined by Table 8.15. It is a morphism of Lie algebras. Moreover:

(a) If \(a^2 \neq b^2 \), then \(\Phi_c \) is an isomorphism of Lie algebras.

(b) If \(a^2 = b^2 \), then its image is isomorphic to \(\mathfrak{sl}_2(\mathbb{C}) \) (with basis \(\Phi_c(q), \Phi_c(Q) \) et \(\Phi_c(eu) \)) and its kernel is commutative, of dimension 7 (as a module for \(\mathfrak{sl}_2(\mathbb{C}) \), it is irreducible).
\[
\begin{align*}
\tau & \longrightarrow -324(a^2 - b^2) \\
& \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix} \\
\mathbf{a}_1 & \longrightarrow -54(a^2 - b^2) \\
& \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix} \\
q & \longrightarrow \begin{pmatrix}
0 & 0 & 0 & 0 \\
-3 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & 3 & 0
\end{pmatrix} \\
\mathbf{a}_2 & \longrightarrow 6(a^2 - b^2) \\
& \begin{pmatrix}
0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -3 & 0
\end{pmatrix} \\
\mathcal{K} & \longrightarrow 9(a^2 - b^2) \\
& \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
\mathbf{a}_3 & \longrightarrow 3(a^2 - b^2) \\
& \begin{pmatrix}
-3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 3
\end{pmatrix} \\
\Omega & \longrightarrow \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
\mathbf{a}_4 & \longrightarrow 3(a^2 - b^2) \\
& \begin{pmatrix}
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix} \\
r \mathbf{u} & \longrightarrow \begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3
\end{pmatrix} \\
\mathbf{a}_5 & \longrightarrow (-9/2)(a^2 - b^2) \\
& \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\end{align*}
\]

Table 8.15. Definition of \(k_c \) for \(d = 6 \)

References

